

Majorana Monte Carlo & Simulations

Reyco Henning U. of North Carolina For the Majorana Simulation Group

Outline

- 1. "MaGe" Simulation Framework
- 2. Majorana Reference Design Simulations.
 - Majorana Background Model
 - Bulk contamination
 - Surface Alpha Contamination
- 3. Continuing/Future work:
 - Cosmic-ray induced neutrons
 - Pulse shape simulation

Charge Addressed:

 b. The status of the technical design, including completeness of technical design and scope, feasibility and merit of technical approach; feasibility and effectiveness of technical performance delivering the science;

Goals of Simulation Package

Jan. 2004. Majorana decided to develop integrated simulation package.

Oct. 2004. Majorana and GERDA joined simulation efforts.

- 1. To provide the collaboration with a physics simulation package to aid in the optimal design, operation and analysis of data from the Majorana experiment.
- 2. The package must persist over the long lifetime of the experiment.
- 3. The package must be wellmaintained, documented, and robust.
- 4. Maintain record of results.

Many different aspects

- 1. Energy deposition of particles from radioactive sources, cosmic rays, and signal sources. Low-energy electromagnetic and neutron interaction packages are critical.
- 2. Pulse-shape formation in crystals, different segmentation schemes, and crystal geometries. Use expertise from GRETINA collaborators.
- 3. Electronics.
- 4. Shielding (neutron absorption and muon tagging).
- 5. Radioactive decay chains and emissions.
- 6. Signal: double-beta decay
- 7. Activation in detector material.
- 8. Different crystal packing arrangements.
- 9.

"MaGe" Simulation Package

Previous Majorana MaGe Activities

Previous Activities: Characterization of radioactive backgrounds in conceptual design for NuSAG proposal. Interpretation of results from highly segmented detector at MSU. **TUNL-Free Electron Laser Run** Charge Distribution in $0\nu\beta\beta$ -decay GERDA (muons and segmentation) Posters at Neutrino04, TAUP05, Neutrino 2006 IEEE San Diego 2006 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 x (mm Two GERDA publications In NIM Majorana publications in preparation

Simulations for Majorana Background Model Detector Data Raw MC Data Operation Prototype Analysis Framework

Validation: Canberra Clover Detector Simulation

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Gerda Collaboration Meeting Munich, Feb. 12, 2007

2400

400 800 1200 1600 2000 Majorana Monte Carlo & Simulations 8 R. Henning, U of North Carolina

Experiment 400 800 200 1600 2000 2400 350 GEANT 150 2400

Crystal

1x8 4x8

Data agrees well with simulations

⁶⁰Co source

•Example: Reduction in Compton edge 820-920 keV:

- •1x8/xtal Exp: 0.62 MaGe: 0.65
- •4x8/xtal Exp: 0.56 MaGe: 0.58

350

150

Experiment with MSU/NSCL Segmented Ge Array

Segmentation successfully rejects backgrounds.

Segmentation test & simulation comparison

Counts / keV / 106 decays

Majorana Reference Design Simulation

Simulated Geometry Shields & Cryostat Removed

Simulation Includes:

- 57 Enriched crystal w/ deadlayers.
- LFEPs
- Support Rods
- Ge Trays
- Contact Rings
- Cryostat
- Shields:
 - Inner, Outer Cu
 - Inner, Outer Pb
 - Neutron shield.
 - Room, rock wall.
- 45,000 CPU hours, 12,000 jobs, 2TB of data.
- Thanks to PDSF:

NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING CENTER

Advancing Computational Science of Scale— Producing Real Results

Bulk Contamination Study

- Simulate spectrum from sources in all detector components.
- Apply heuristic analysis cuts:
 - Granularity
 - Segmentation (~20 schemes).
 - Pulse shape discrimination estimator
 - 3D Reconstruction (highlysegmented detectors).
 - Use clustering of energy deposits
 - Modified electrode
- ²⁰⁸TI in Copper
- "Small parts"

Sources

- Crystals Internal:
 - ⁶⁸Ge, ⁶⁰Co, ²¹⁴Bi, ²⁰⁸TI :
 - $2\nu\beta\beta$, $0\nu\beta\beta$:
- Support Rods: ²⁰⁸TI, ²¹⁴Bi, ⁶⁰Co.
- Ge Trays: ²⁰⁸TI, ²¹⁴Bi.
- Contact Rings: ²⁰⁸TI, ²¹⁴Bi.
- Cabling: ²⁰⁸TI, ²¹⁴Bi.
- LFEPs: ²⁰⁸TI, ²¹⁴Bi, ⁶⁰Co.
- Cryostat, ²⁰⁸TI, ²¹⁴Bi, ⁶⁰Co:
- Crystals Surface: Rn daughters (alphas). U/Th dust
- Inner Cu shield: ²⁰⁸TI, ²¹⁴Bi, ⁶⁰Co.
- Other Shielding.
- WIP

Example spectra: ⁶⁰Co in Cryostat

Cuts very effective against ⁶⁰Co (inherently multi-site event)

Example spectra:⁶⁰Co in Cryostat (2)

3D Reconstruction

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Surface Alpha Contamination

Generic Surface Sampler Studied several chains **Example Spectrum in Reference Design** (²²²Rn to ²⁰⁶Pb): -500 -550 .600 Counts/keV 650 No Analysis Cuts Granularity Cut 2x3 Segmentation and Radial Cut 10³ 6x6 Segmentation and Radial Cut 10² \mathcal{M} 10 1000 2000 3000 4000 5000 6000 Energy [keV]

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Surface Cleanliness Requirements

Cleanliness requirements for inner surfaces similar to Sudbury Neutrino Observatory Neutral Current Detectors.

Additional R&D: Reference Design Calibration Simulation

- Simulation of ²³²Th wire source wrapped 315° around RD cryostat..
- Constructed spectra per concentric shell in the RD array to understand calibration rate requirements
- This spectrum corresponds to roughly 19 hours of runtime with 0.22 mm diameter Thorium wire available commercially from Goodfellow.
- Will provide additional validation with LANL Clover.

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Cosmic-ray induced background.

- In Progress
- Complex simulation. Requires Physics from 100's of GeV to 4 keV window. Complex inelastic neutron processes.
- Current result from Mei & Hime (2006) and others indicate Majorana requires ~ 4500 mwe.
- Depends on Geometry, ie. shielding
- Goal: confirm Mei & Hime results with Majorana Reference Design
- Baseline Monte Carlo against data first.
 - Quantify Uncertainties
- Two aspects under investigation:
 - Simulation of neutron production from cosmic-rays and neutron propagation through rock
 - Neutron interactions in detector material.
- Status: Identified and corrected many shortcomings in Geant4. Active discussion with Geant 4 collaboration.
- Anticipate production running early next calendar year.

Example of Validation: AmBe source with LANL clover

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Gerda Collaboration Meeting Munich, Feb. 12, 2007

Waveform Simulation for Majorana

- Based on Ramo's Theorem
- Well tested for Ge detector applications
- Rely on GRETINA Development
- Implementation Under Development for Majorana/MaGe

and internal to the collaboration).

Example single hit waveform simulation using MaGe implementation of GRETINA m3d2s package

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina Gerda Collaboration Meeting Munich, Feb. 12, 2007

Conclusions & Outlook

- Completed significant effort to quantify purity requirements for Reference Design with heuristic analysis cuts.
- Collaboration w/ Gerda extremely valuable.
- Future/ongoing work:
 - Additional validation: Highly-segmented HPGe detector at Oroville, LANL Clover with ²³²Th source, …
 - Muon-induced background --> Depth and shielding requirements.
 - Pulse shape simulation. Interface w/ GRETINA.
 - Phased startup.
 - Additional cryostats
 - Pulse shape analysis
 - Detector characterization requirements
 - Full spectra analysis and background model.
 - Analysis framework and tools.

Backup slides

Surface Alpha Contamination

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

1

Muon-induced neutrons

AmBe Source Spectra

- Added nuclear quenching.
- Comparison identified issues with cross section data, metastable states, and internal conversion electrons. --> Corrected for.
- Effect of granularity cut captured.

SLAC electron beam-dump

- 28.7 GeV e⁻ on Al
- Measured neutron flux through steel and concrete

NIM A **503** (2003) 595ff.

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Muon-induced neutrons

Neutron Transport

- Problems identified:
 - Under production of primary neutrons
 - Over attenuation of neutrons
 - Working with Geant 4 to resolve this.
 - Possible Solutions:
 - Include correction in Monte Carlo.
 - Interface with FLUKA

Majorana Monte Carlo & Simulations R. Henning, U of North Carolina

Waveforms in MaGe

- Object-oriented architecture
 - Can implement
 different
 MGVWaveformGene
 rators while ignoring
 I/O details
 - Can generate
 waveforms from
 MaGe output files or
 on-the-fly
- Output to ROOT for offline processing

- 1x1 (non-segmented), 3x2, ... ,6x6
- Finite Element Analysis code for field and potentials
- GRETINA (m3d2s) code for pulse generation
- Impurity charge density $r(z) = 0.0016^{*}(1.+20.^{*}z(m))$ C/m³

