Cosmology results from Planck

Jan Hamann

CERN

21st March: 28 Planck cosmology papers

Title	Authors	Publication
Planck 2013 results. I. Overview of products and results	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. II. Low Frequency Instrument data processing	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. III. LFI systematic uncertainties	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. IV. LFI beams	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. V. LFI calibration	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. VI. High Frequency Instrument data processing	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. VII. HFI time response and beams	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. VIII. HFI calibration and mapmaking	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. IX. HFI spectral response	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. X. HFI energetic particle effects	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XI. Consistency of the data	Planck Collaboration	2013 In preparation
Planck 2013 results. XII. Component separation	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XIII. Galactic CO emission	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XIV. Zodiacal emission	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XV. CMB power spectra and likelihood	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XVI. Cosmological parameters	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XVII. Gravitational lensing by large-scale structure	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXI. All-sky Compton-parameter map and characterization	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXII. Constraints on inflation	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXIII. Isotropy and statistics of the CMB	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXV. Searches for cosmic strings and other topological defects	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXVI. Background geometry and topology of the Universe	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXVII. Special relativistic effects on the CMB dipole	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXVIII. The Planck Catalogue of Compact Sources	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources	Planck Collaboration	2013 Submitted to A&A
Planck 2013 results, Explanatory supplement	Planck Collaboration	2013 ESA

Planck at a glance

Table 2. Planck performance parameters determined from flight data.

				Scanning Beam ^c		Noise ^d	
	CHANNEL	$N_{ m detectors}{}^{ m a}$	$\nu_{\text{center}}^{\text{b}}$ [GHz]	FWHM [arcm]	Ellipticity	$\frac{1}{[\mu K_{RJ} s^{1/2}]}$	$[\mu K_{\rm CMB} {\rm s}^{1/2}]$
	30 GHz	4	28.4	33.16	1.37	145.4	148.5
LFI	44 GHz	6	44.1	28.09	1.25	164.8	173.2
	> 70 GHz	12	70.4	13.08	1.27	133.9	151.9
	100 GHz	8	100	9.59	1.21	31.52	41.3
	143 GHz	11	143	7.18	1.04	10.38	17.4
HEI	$217 \mathrm{GHz} \ldots \ldots$	12	217	4.87	1.22	7.45	23.8
1 11 1	353 GHz	12	353	4.7	1.2	5.52	78.8
	545 GHz	3	545	4.73	1.18	2.66	0.0259 ^d
	857 GHz	4	857	4.51	1.38	1.33	0.0259 ^d

What does Planck see? Microwave sources

What does Planck see? Microwave sources

Surface of last scattering Cosmic Microwave Background *Extragalactic foregrounds* e.g., cosmic infrared background,

point sources

How to deal with foregrounds?

- masking
- component separation
- modelling

Galactic foregrounds

e.g., dust emission, synchrotron emission, free-free emission

Galactic foregrounds

Galactic foregrounds have different frequency dependences \rightarrow use multi-frequency information for separating components

Planck's view of the microwave sky

Planck's view of the microwave sky

These maps represent data from the nominal mission 70 Ghz (~15.5 months of observation)

> Full mission has about twice as much data

<mark>217 G</mark>hz

No polarisation maps (yet)

353 Ghz

100

ΞHz

30 Ghz

545 Ghz

857 Ghz

Cleaned map of CMB temperature anisotropies

From COBE to Planck

WMAP

0.3°

Planck < 0.1°

COBE 7°

Cosmological observables

Angular power spectrum

Planck (temperature) angular power spectrum

Cosmological observables

Weak gravitational lensing of the CMB

of the original CMB

Weak gravitational lensing of the CMB

map of the deflection angle

map of the lensing potential

Planck lensing potential and its angular power spectrum

Galactic South

25σ detection of CMB lensing!

Cosmological observables

Power spectrum of the lensing potential

What have we learnt about cosmology?

A maximally boring Universe?

No real surprises, no paradigm changes

The cosmological "standard" (ΛCDM) model still stands strong

Significant improvements in constraints on nearly all interesting cosmological parameters

Altogether 6 cosmological parameters:

$$A_{\rm s}, n_{\rm s}, H_0, \omega_{\rm b}, \omega_{\rm c}, \tau$$

plus another 14 "nuisance" parameters, describing

- perturbations from
 - the cosmic infrared background (4)
 - unresolved point sources (4)
 - the Sunyaev-Zeldovich effect (3)
- beam shape uncertainties (1)
- relative calibration uncertainties (2)

Basic ACDM parameters CMB only

Basic ACDM nuisance parameters

Planck (temperature) angular power spectrum

Multipole *l*

Goodness-of-fit of ΛCDM

Table 6. Goodness-of-fit tests for the *Planck* spectra. The $\Delta \chi^2 = \chi^2 - N_\ell$ is the difference from the mean assuming the model is correct, and the last column expresses $\Delta \chi^2$ in units of the dispersion $\sqrt{2N_\ell}$.

Spectrum	ℓ_{\min}	ℓ_{\max}	χ^2	χ^2/N_ℓ	$\Delta \chi^2 / \sqrt{2N_\ell}$
100×100	50	1200	1158	1.01	0.14
143×143	50	2000	1883	0.97	-1.09
217×217	500	2500	2079	1.04	1.23
143×217	500	2500	1930	0.96	-1.13
All	50	2500	2564	1.05	1.62

Planck polarisation angular power spectra

Best-fit ACDM model plotted against Planck polarisation data Note: this is *not* a fit to these data!

ACDM parameters vs. WMAP

Consistency with other data sets

• Very good consistency:

Consistency with other data sets

• Reasonable consistency:

Supernova light-curves - Type la supernova luminosity distances

Consistency with other data sets

• Some inconsistency:

Cluster counts ($\sim 3\sigma$)

CMB + x-ray

Galaxy weak lensing

CMB

Supernova light-curves (+ astro)

- CFHTLenS cosmic shear (~ 3σ)
- SPT intermediate-scale data (~2.5σ) most likely a calibration issue with SPT
- Measurements of the Hubble parameter ($\sim 2.5\sigma$)

Total energy budget

Before Planck After Planck

Change is due to shift in determination of the Hubble parameter

Different models/data combinations: "the grid"

- Basic ACDM model plus eighteen different extensions
- Each of them fit with up to thirty-four combinations of Planck with external data sets
- Almost 400 pages of tables with parameter constraints
- Available online under:

http://www.sciops.esa.int/index.php?project=
planck&page=Planck_Legacy_Archive

Constraints on the energy content

Neutrino mass constraints

Planck + WP

Planck + WP + BAO

	Planck+WP		Planck+WP+BAO		Planck+WP+highL		Planck+WP+highL+BAO	
Parameter	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits
$\Sigma m_{\nu} [eV] \ldots \ldots$	0.022	< 0.933	0.002	< 0.247	0.023	< 0.663	0.000	< 0.230

No evidence for neutrino masses

Effective number of neutrino species

radiation energy density

effective number of neutrino species

Standard value: 3.046

Effective number of neutrino species

Planck + WP

Planck + WP + BAO

No evidence for extra ("dark") radiation

Consistency with BBN and primordial element abundances

Dark energy equation of state

Cosmological constant: w = -1

Dark energy constraints

Planck + WP

Planck + WP + BAO

No evidence for departure from cosmological constant

Spatial curvature

Spatial curvature constraints

Planck + WP

Planck + WP + BAO

Planck+WP		Planck+WP+BAO	Planck+WP+highL	Planck+WP+highL+BAO	
Parameter	Best fit 95% limits	Best fit 95% limits	Best fit 95% limits	Best fit 95% limits	
Ω_K	-0.0105 $-0.037^{+0.043}_{-0.049}$	0.0000 0.0000 ^{+0.0066} _{-0.0067}	$-0.0111 \ -0.042^{+0.043}_{-0.048}$	$0.0009 -0.0005^{+0.0065}_{-0.0066}$	

No evidence for non-zero spatial curvature

Initial perturbations: inflation

Potential energy domination:

- Scale factor grows exponentially with time
- Hubble parameter close to constant
- Space is flattened

Reheating

 Potential energy is converted to standard model particles

Predictions of the simplest models

The scale-invariant (HZ-) spectrum

Scale-invariant spectrum (n_s = 1, "white noise") is now ruled out at more than 5σ from *Planck* + WP data alone =ven for extended models, still disfavoured at 3σ, when combined

Even for extended models, still disfavoured at 3σ , when combined with BAO data

 \rightarrow strong argument for dynamical generation of primordial perturbation

Higher order terms in the power spectrum

Predictions of the simplest models

Constraints on a selection of inflation models

Predictions of the simplest models

Non-Gaussianity

Predictions of the simplest models

Adiabaticity: constraints on isocurvature perturbations

Predictions of the simplest models

Anomalies?

A lack of power at large scales?

A feature at small scales?

About 3 significance

Violation of statistical isotropy?

Hemispherical difference in power?

The "cold spot"

Already known from WMAP data, confirmation that these features are not due to data processing

Conclusions

- Planck has delivered an exquisite measurement of the CMB temperature anisotropies, extracting close to the maximum achievable amount of information from this observable
- The ACDM model continues to provide an overall very good description of the data, the Universe did not have any surprises in store for us
- In addition, interesting measurements of CMB lensing, ISW effect, SZ clusters, the CMB dipole and constraints on primordial non-Gaussianity
- Old and new anomalies of weak to moderate significance still unexplained
- Planck full mission data (including polarisation data) will be released next year