Probing and Controlling Ultracold Quantum Matter under Extreme Conditions

Monika Aidelsburger, Marcos Atala, Julio Barreiro
Christian Gross, Stefan Kuhr, Manuel Endres, Marc Cheneau, Takeshi Fukuhara, Peter Schauss, Sebastian Hild, Johannes Zeiher

Ulrich Schneider, Simon Braun, Philipp Ronzheimer, Michael Schreiber, Tim Rom, Sean Hodgman

Monika Schleier-Smith, Lucia Duca, Tracy Li, Martin Reitter, Josselin Bernadoff, Henrik Lüschen
Ahmed Omran, Martin Boll, Timon Hilker, Michael Lohse, Thomas Reimann, Christian Gross

Simon Fölling, Francesco Scazza, Christian Hofrichter, Pieter de Groot, Moritz Höfer, Christian Sch eizeizer, Emily Davis

Christoph Gohle, Tobias Schneider, Nikelaus Buchheim, Zhenkai Lu, Diana Amaro

Max-Planck-Institut für Quantenoptik Ludwig-Maximilians Universität

Outline

Introduction
Single Atom Imaging
Three Applications
SF-Mott Insulator Transition/Thermometry/
Quantum Fluctuations
Controlling Single Spins
'Higgs'-Amplitude Mode in 2D

Artificial Gauge Fields - Extreme Magnetic Fields
Quantum Matter at Negative Absolute Temperature
Outlook

Control of single particles

Single Atoms and lons

Photons

Control of single particles

Single Atoms and Ions

Photons

Challenge: ... towards ultimate control of many-body quantum systems

R. P. Feynman's Vision

A Quantum Simulator to study the dynamics of another quantum system.

Crystal of Atoms Bound by Light

Strongly Correlated Electronic Systems

$$
H=-J \sum_{\langle i, j\rangle, \sigma} \hat{c}_{i, \sigma}^{\dagger} \hat{c}_{j, \sigma}+U \sum_{i} \hat{n}_{i, \uparrow} \hat{n}_{i, \downarrow}+V_{0} \sum_{i, \sigma} R_{i}^{2} \hat{n}_{i, \sigma}
$$

In strongly correlated electron system spin-spin
interactions exist.

$$
-J_{e x} \vec{S}_{i} \cdot \vec{S}_{j}
$$

Underlying many solid state \& material science problems:
Magnets, High-Tc Superconductors, Spintronics

Parameters:
Densities: $10^{15} \mathrm{~cm}^{-3}$

Ground States at $T=0$

Temperatures: Nano Kelvin
Atom Numbers 10^{6}

Bose-Einstein Condensates e.g. ${ }^{87}$ Rb

Degenerate Fermi Gases e.g. ${ }^{40} \mathrm{~K}$

Centennial Nobel Prize in Physics for BEC
E. Cornell, C. Wieman \& W. Ketterle

Introduction
 Optical Lattice Potential - Perfect Artificial Crystals

$\lambda / 2=425 \mathrm{~nm}$
optical standing wave

Perfect model systems for a fundamental understanding of quantum many-body systems

Periodic intensity pattern creates ID,2D or 3D light crystals for atoms (Here shown for small polystyrol particles).
$39 \mathrm{~K}-39 \mathrm{~K}$ Feshbach resonance

Feshbach resonance allow us to control interactions!

Quantum Regime $\lambda / d \gtrsim 1$
N

ERC Synergy From Artificial Quantum Matter to Real Materials

Quantum Regime

 $\lambda / d \gtrsim 1$

Ultracold Quantum Matter

- Densities: $\quad 10^{14} / \mathrm{cm}^{3}$
(I00000 times thinner than air)
- Temperatures: few nK
(I00 million times lower than outer space)

Real Materials
\Leftrightarrow Densities: $10^{24}=10^{25} / \mathrm{cm}^{3}$

- Temperatures: mK several hundred K

Same $\lambda / d!$
(Neuchatel)

Expanding the field operator in the Wannier basis of localized wave functions on each lattice site, yields :

$$
\hat{\psi}(\boldsymbol{x})=\sum_{i} \hat{a}_{i} w\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)
$$

Bose-Hubbard Hamiltonian

$$
H=-J \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\sum_{i} \varepsilon_{i} \hat{n}_{i}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Tunnelmatrix element/Hopping element

$$
J=-\int d^{3} x w\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V_{l a t}(\boldsymbol{x})\right) w\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right)
$$

Onsite interaction matrix element

$$
U=\frac{4 \pi \hbar^{2} a}{m} \int d^{3} x|w(\boldsymbol{x})|^{4}
$$

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 8I, 3108 (I998)

Mott Insulators now at: Munich, Mainz, NIST, ETHZ, Texas, Innsbruck, MIT, Chicago,Florence,... see also work on JJ arrays H. Mooij et al., E. Cornell,...

$\gamma=\frac{\sum_{\text {Interaction Energy }}^{\text {In }}}{\text { Kine }} 1$
 Kinetic Energy

$\gamma=\frac{\text { Interaction Energy }}{\text { King } 1}$
 Kinetic Energy

Weak Interactions

Weak Interactions

Strong Interactions

Weak Interactions

Strong Interactions

Single Atom Detection in a Lattice

Measuring a Quantum System

Single Particle
$\Psi(\mathbf{x}) \quad$ wave function
$|\Psi(\mathbf{x})|^{2} \quad$ probability distribution
averaging over single-particle measurements, we obtain $|\Psi(\mathbf{x})|^{2}$

Correlated 2D Quantum Liquid

$$
\begin{gathered}
\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{N}\right) \\
\left|\Psi\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots, \mathbf{x}_{N}\right)\right|^{2}
\end{gathered}
$$

For many-body system: need access to single snapshots of the many-particle system!

Enables Measurement of
Non-local Correlations

Experimental Setup

dePue et al., PRL 82, 2262 (1999)
initial density distribution
Light-induced collisions

measured occupation: $n_{\text {det }}=\bmod _{2} n$
measured variance: $\quad \sigma_{\text {det }}^{2}=\left\langle n_{\text {det }}^{2}\right\rangle-\left\langle n_{\text {det }}\right\rangle^{2}$
parity projection $\Rightarrow\left\langle n_{\text {det }}^{2}\right\rangle=\left\langle n_{\text {det }}\right\rangle$
see also E. Kapit \& E. Mueller, Phys. Rev. A 82, 013644 (2010)

In-Situ Imaging of a Mott Insulator

J. Sherson et al. Nature 467, 68 (2010),
see also S. Fölling et al. Phys. Rev. Lett (2006), G.K. Campbell et al. Science (2006)
N. Gemelke et al. Nature (2009), W. Bakr et al. Science (2010)
www.quantum-munich.de

Mott Insulators

Superfluid
Mott-Insulator

- Poissonian atom number distribution - Number squeezing
- Long range phase coherence

- No phase coherence

Snapshot of an Atomic Density Distribution

BEC

$$
\begin{gathered}
\mathrm{n}=\mathrm{I} \\
\text { Mott Insulator }
\end{gathered}
$$

$$
n=1 \& n=2
$$

Mott Insulator

Particle Hole Correlations

$J / U=0.06$
$\mathrm{J} / \mathrm{U}=0.1 \mathrm{I}$
$\mathrm{J} / \mathrm{U}=0.3$

$$
C(d)=\left\langle\hat{s}_{k} \hat{s}_{k+d}\right\rangle-\left\langle\hat{s}_{k}\right\rangle\left\langle\hat{s}_{k+d}\right\rangle
$$

Two point correlator

Lieb-Robinson Bounds
 Light-cone spreading of correlations

- Quasiparticle dynamics

E. Lieb \& D.W. Robinson (I972)

Bravyi, Hastings and Verstraete (2006)
Calabrese and Cardy (2006)
Eisert and Osborne (2006)
Nachtergaele, Ogata and Sims (2006)
.. and many others since then

M. Cheneau et al. Nature (2012)

single site Adr ressing

Coherent Addressing of Atoms

- $\mathrm{F}=\mathrm{I}, \mathrm{m}_{\mathrm{F}}=-\mathrm{I}$ Atoms $\bigcirc \mathrm{F}=2, \mathrm{~m}_{\mathrm{F}}=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

Coherent Addressing of Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

Coherent Addressing of Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$
\frac{(2,-2)}{\frac{(1,-1)}{} \cdots \cdots \cdots \cdots \cdots}(1,-\cdots)
$$

Coherent Addressing of Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$
\frac{(2,-2)}{\frac{(1,-1)}{} \cdots \cdots \cdots \cdots \cdots}(1,-\cdots)
$$

Coherent Addressing of Atoms

- $\mathrm{F}=\mathrm{I}, \mathrm{m}_{\mathrm{F}}=-\mathrm{I}$ Atoms $\bigcirc \mathrm{F}=2, \mathrm{~m}_{\mathrm{F}}=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$
\frac{(2,-2)}{\frac{(1,-1)}{\cdots}-\cdots \cdots(1,-\cdots)}(2,-2)
$$

Coherent Addressing of Atoms

- $\mathrm{F}=\mathrm{I}, \mathrm{m}_{\mathrm{F}}=-\mathrm{I}$ Atoms $\bigcirc \mathrm{F}=2, \mathrm{~m}_{\mathrm{F}}=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$
\frac{(2,-2)}{\frac{(1,-1)}{\cdots}-\cdots \cdots(1,-\cdots)}(2,-2)
$$

Coherent Addressing of Atoms

- $\mathrm{F}=\mathrm{I}, \mathrm{m}_{\mathrm{F}}=-\mathrm{I}$ Atoms $\bigcirc \mathrm{F}=2, \mathrm{~m}_{\mathrm{F}}=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$
\frac{(2,-2)}{\frac{(1,-1)}{} \cdots \cdots(1,-\cdots)}(2,-2)
$$

Coherent Spin Flips - Positive Imaging

Subwavelength spatial resolution: 50 nm

Ch. Weitenberg et al., Nature 471, 319-324 (2011)

Digital Mirror Device (DMD)

Arbitrary Light Patterns

Measured Light Pattern

Digital Mirror Device (DMD)

Digital Mirror Device (DMD)

Measured Light Pattern

Exotic Lattices

Quantum Wires

Box Potentials

Almost Arbitrary Light Patterns Possible!

Single Spin Impurity Dynamics, Domain Walls, Quantum Wires, Novel Exotic Lattice Geometries, ...

'Higgs' Amplitude Mode in Flatland

M. Endres, T. Fukuhara, M. Cheneau, P. Schauss, D. Pekkar, E. Demler, S. Kuhr \& I.B.

Spotaneous Symmetry Breaking

$$
L=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi-\frac{1}{2} \lambda\left(\phi^{*} \phi\right)^{2}
$$

Relativistic Quantum Field-Theory of complex field ϕ with mass m.

$$
L=\partial_{\mu} \phi^{*} \partial^{\mu} \phi+m^{2} \phi^{*} \phi-\frac{1}{2} \lambda\left(\phi^{*} \phi\right)^{2}
$$

Imagine negative mass term.

$$
L=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-V(\phi)
$$

$$
\phi(x) \rightarrow \phi(x) e^{i \theta}
$$

Lagrangian is $\mathrm{U}(\mathrm{I})$ symmetric
$V(\phi)=-\frac{1}{2} \lambda v^{2} \phi^{*} \phi+\frac{1}{2} \lambda\left(\phi^{*} \phi\right)^{2} \quad v^{2}=-2 m^{2} / \lambda$
Minimum of Mexican Hat at: $\quad|\phi|^{2}=\frac{v^{2}}{2}$
Pick one vacuum state! Expand field around: $\quad \phi=\frac{1}{\sqrt{2}}\left(v+\varphi_{1}+i \varphi_{2}\right)$

$$
L=\frac{1}{2}\left[\left(\partial_{\mu} \varphi_{1}\right)^{2}+\left(\partial_{\mu} \varphi_{2}\right)^{2}\right]-\frac{1}{2} \lambda v^{2} \varphi_{1}^{2}+\ldots
$$

φ_{1}, φ_{2} real scalar fields
$V(\phi)=-\frac{1}{2} \lambda v^{2} \phi^{*} \phi+\frac{1}{2} \lambda\left(\phi^{*} \phi\right)^{2} \quad v^{2}=-2 m^{2} / \lambda$
Minimum of Mexican Hat at: $\quad|\phi|^{2}=\frac{v^{2}}{2}$
Pick one vacuum state! Expand field around: $\quad \phi=\frac{1}{\sqrt{2}}\left(v+\varphi_{1}+i \varphi_{2}\right)$

$$
L=\frac{1}{2}\left[\left(\partial_{\mu} \varphi_{1}\right)^{2}+\left(\partial_{\mu} \varphi_{2}\right)^{2}\right]-\frac{1}{2} \lambda v^{2} \varphi_{1}^{2}+\ldots
$$

Massless Nambu-
Goldstone mode
φ_{1}, φ_{2} real scalar fields
$V(\phi)=-\frac{1}{2} \lambda v^{2} \phi^{*} \phi+\frac{1}{2} \lambda\left(\phi^{*} \phi\right)^{2} \quad v^{2}=-2 m^{2} / \lambda$
Minimum of Mexican Hat at: $\quad|\phi|^{2}=\frac{v^{2}}{2}$
Pick one vacuum state! Expand field around:

$$
\phi=\frac{1}{\sqrt{2}}\left(v+\varphi_{1}+i \varphi_{2}\right)
$$

$$
L=\frac{1}{2}\left[\left(\partial_{\mu} \varphi_{1}\right)^{2}+\left(\partial_{\mu} \varphi_{2}\right)^{2}\right]-\frac{1}{2} \lambda v^{2} \varphi_{1}^{2}+\ldots
$$

Massless NambuGoldstone mode

Massive
Higgs mode
φ_{1}, φ_{2} real scalar fields

Excitations in radial direction are gapped due to 'Higgs mass'!

Anderson-Hliggs Mechanism

$\theta \rightarrow \theta(x) \quad$ Extend to local $\mathrm{U}(\mathrm{I})$ gauge symmetry.
$A_{\mu} \rightarrow A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \theta(x) \quad$ introduces vector potential
$D_{\mu} \phi=\partial_{\mu} \phi+i e A_{\mu} \phi$ minimal coupling

$$
L=D_{\mu} \phi^{*} D^{\mu} \phi-\frac{1}{4} F_{\mu \nu} F^{\mu v}-V(\phi)
$$

Breaking symmetry leads to:

$$
L=\frac{1}{2}\left(\partial \varphi_{1}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \varphi_{2}+e v A_{\mu}\right)^{2}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} \lambda v^{2} \varphi_{1}^{2}+\ldots
$$

Photons have become massive ($m^{2}=\mathrm{ev}$)!

Similiar for non-Abelian gauge theory $\mathrm{U}(\mathrm{I}) \times \mathrm{SU}(2)$
 W,Z bosons Englert, Brout, Higgs, Guralnik, Hagen, Kibble, Weinberg ~1964

Anderson-Hliggs Mode in CM Physics

Close to a quantum critical point, effectively relativistic field theory! see e.g.: Subir Sachdev, Quantum Phase Transitions

Here: SF-MI transition for $n=I, O(2)$ field theory in $2+I$ dimension

Fundamental question in 2D:

is mode observable or overdamped?

Chubukov \& Sachdev, PRB 1993
Sachdev, PRB 1999; Zwerger, PRL 2004;
Altman, Blatter, Huber, PRB 2007, PRL 2008;
Menotti \& Trivedi, PRB 2008; Podolsky,
Auerbach, Arovas, PRB 201I; Pollet \&
Prokof'ev PRL 2012; Sachdev \& Podolsky, PRB 2012; ...

Other systems: Quantum spin systems $\mathbf{O (3)}$ in 3+I dimensions
Ch. Rüegg et al. Physical Review Letters (2008)
in superconductors coupled to CDW:
C.Varma \& P. Littlewood PRL, PRB $(1981,1982)$

Dynamics in the Superfluid Phase

Far from the Mott lobe, SF described by Gross-Pitaevskii action:

$$
S=\int d^{3} r d t\left(-i \psi^{*} \partial_{t} \psi-\frac{1}{2 m^{*}}|\nabla \psi|^{2}+\mu|\psi|^{2}-g|\psi|^{4}\right)
$$

Galilean invariant. Predicts massless Goldstone mode, but nc

GPE: Phase and amplitude mode are c.c. variables! Therefore only one mode!

Close to QCP: Phase and ampltiude of order parameter commute: two

Near the Mott lobe at integer filling, particle-hole symmetry leads to relativistic dynamics:

$$
\begin{array}{r}
S=\int d^{3} r d t \\
\left(\left|\partial_{t} \psi\right|^{2}-c^{2}|\nabla \psi|^{2}\right. \\
\left.+r|\psi|^{2}-u|\psi|^{4}\right)
\end{array}
$$

Lorentz invariant. Predicts Goldstone mode and Higgs mode.

Courtesey: Danny Podolsky (Technion)

Relativistic vs Gross-Pitaevskii Dynamics

From Euler-Lagrange equation, we obtain:

Lorentz invariant action

$$
\begin{aligned}
& \ddot{\varphi}_{1}=c_{s}^{2} \nabla^{2} \varphi_{1}-\Delta_{0}^{2} \varphi_{1} \\
& \ddot{\varphi}_{2}=c_{s}^{2} \nabla^{2} \varphi_{2}
\end{aligned}
$$

$$
\omega_{1}(k)=\sqrt{\Delta_{0}^{2}+c_{s}^{2} k_{1}^{2}}
$$

Relativistic Mode
Amplitude!
$\omega_{2}(k)=c_{s} k$
Sound Mode
Density!

Galilean invariant action

$$
\begin{aligned}
-\dot{\varphi}_{1} & =\frac{\hbar^{2}}{2 m} \nabla^{2} \varphi_{2} \\
\dot{\varphi}_{2} & =\frac{\hbar^{2}}{2 m} \nabla^{2} \varphi_{1}-2 \mu \varphi_{1}
\end{aligned}
$$

$$
\omega(\tilde{k})=\sqrt{\mu^{2} \tilde{k}^{2}\left(\tilde{k}^{2}+2\right)}
$$

Bogoliubov Mode

'Relativistic'
Lorentz Invariant

‘Classical
Galilean Invariant

LMU

Broken Symmetry and Collective Modes

Courtesey: Danny Podolsky (Technion)

Broken Symmetry and Collective Modes

Two ways to parameterize deviations from the ordered state :
I) Cartesian : $\quad \boldsymbol{\phi}=(\sqrt{N}+\sigma, \boldsymbol{\pi})$
$\mathcal{L}_{0}=\frac{1}{2 g}\left[\left(\partial_{\mu} \sigma\right)^{2}-m^{2} \sigma^{2}+\left(\partial_{\mu} \boldsymbol{\pi}\right)^{2}\right]$

Courtesey: Danny Podolsky (Technion)

Broken Symmetry and Collective Modes

Two ways to parameterize deviations from the ordered state :
I) Cartesian : $\quad \boldsymbol{\phi}=(\sqrt{N}+\sigma, \boldsymbol{\pi})$
$\mathcal{L}_{0}=\frac{1}{2 g}\left[\left(\partial_{\mu} \sigma\right)^{2}-m^{2} \sigma^{2}+\left(\partial_{\mu} \boldsymbol{\pi}\right)^{2}\right]$
$\pi \quad(N-1$ directions $)$
2) Polar: $\boldsymbol{\phi}=\sqrt{N}(1+\rho)^{1 / 2} \hat{\boldsymbol{n}}$

Broken Symmetry and Collective Modes

Two ways to parameterize deviations from the ordered state :
I) Cartesian : $\quad \boldsymbol{\phi}=(\sqrt{N}+\sigma, \boldsymbol{\pi})$

$$
\mathcal{L}_{0}=\frac{1}{2 g}\left[\left(\partial_{\mu} \sigma\right)^{2}-m^{2} \sigma^{2}+\left(\partial_{\mu} \boldsymbol{\pi}\right)^{2}\right]
$$

$\mathcal{L}_{1}=\frac{m^{2}}{2 g}\left[\frac{1}{\sqrt{N}} \sigma \pi^{2}+\frac{1}{\sqrt{N}} \sigma^{3}+\frac{1}{4 N} \sigma^{4}+\frac{2}{N} \sigma^{2} \pi^{2}+\frac{1}{4 N}\left(\pi^{2}\right)^{2}\right]$
2) Polar: $\boldsymbol{\phi}=\sqrt{N}(1+\rho)^{1 / 2} \hat{\boldsymbol{n}}$

$$
\mathcal{L}=\frac{1}{2 g}\left[N(1+\rho)\left(\partial_{\mu} \hat{\boldsymbol{n}}\right)^{2}+\frac{\left(\partial_{\mu} \rho\right)^{2}}{4(N+\rho)}+\frac{m^{2} \rho^{2}}{4 N}\right]
$$

Courtesey: Danny Podolsky (Technion)

Lifetime of Higgs Excitation

It can decay into a pair of Goldstone bosons :

$$
\mathcal{L}_{\text {int }} \propto \begin{cases}\sigma \pi^{2} & \text { (Cartesian) } \\ \rho\left(\partial_{\mu} \hat{\boldsymbol{n}}\right)^{2} & \text { (polar) }\end{cases}
$$

Cartesian and polar calculations correspond to different correlation functions.

Depends on the type of experiment performed.

Courtesey: Danny Podolsky (Technion)

Higgs Response Function

The longitudinal response function is measured by an experiment where the probe couples directly to the order parameter field:

$$
S_{\text {probe }}=\int d^{d} x \int d t \boldsymbol{h}(\boldsymbol{x}, t) \cdot \boldsymbol{\phi}(\boldsymbol{x}, t)
$$

Example : neutron scattering in an antiferromagnet.

Courtesey: Danny Podolsky (Technion)

Higgs Response Function

The longitudinal response function is measured by an experiment where the probe couples directly to the order parameter field:

$$
S_{\text {probe }}=\int d^{d} x \int d t \boldsymbol{h}(\boldsymbol{x}, t) \cdot \boldsymbol{\phi}(\boldsymbol{x}, t)
$$

Example : neutron scattering in an antiferromagnet.

The scalar response function is measured by an experiment where the probe couples directly to the magnitude of the order parameter field:

$$
S_{\text {probe }}=\int d^{d} x \int d t u(\boldsymbol{x}, t)|\boldsymbol{\phi}(\boldsymbol{x}, t)|^{2} \quad|\boldsymbol{\phi}|^{2}=N(1+\rho)
$$

Examples : Iattice modulation spectroscopy

Courtesey: Danny Podolsky (Technion)

Exciting the Amplitude Mode

Modulate coupling strength

V

 close to Quantum Phase Transition!$$
j=j+\delta j \sin (\omega t)
$$

$$
j=J / U
$$

Amplitude Modulation of Lattice
Bragg spectroscopy: couples mainly to phonons

Exp.: Ch. Schori et al. Phys. Rev. Lett. (2004) (ETHZ), Theory: C. Kollath et al., Phys. Rev. Lett (2006) U. Bissbort et al. Phys. Rev. Lett. (20II) (Frankfurt, Hamburg)

Exciting the Amplitude Mode

Modulate coupling strength close to Quantum Phase Transition!

$$
j=j+\delta j \sin (\omega t)
$$

$$
j=J / U
$$

Amplitude Modulation of Lattice
Bragg spectroscopy: couples mainly to phonons

Exp.: Ch. Schori et al. Phys. Rev. Lett. (2004) (ETHZ), Theory: C. Kollath et al., Phys. Rev. Lett (2006) U. Bissbort et al. Phys. Rev. Lett. (201I) (Frankfurt, Hamburg)

Evolution Across Critical Point

Higgs mode softens towards critical point!

Exciting the Amplitude Mode

Absorbed energy

$$
E=2 \pi(\delta J)^{2} S(\omega) \omega T_{\mathrm{mod}}
$$

Very low modulation amplitude!
Very sensitive temperature measurement!

Use fit with error function to find minimum excitation frequency! (also avoids inhomogeneous trap effects)

Width of model 'error' function

Ratio width vs resonance frequency
Mode remains well defined upon approaching the critical point!

Measuring Across the QCP

Anderson-Higgs mode softens towards critical point and turns into opening gap of Mott Insulator!

Theory in SF (S. Huber et al. PRB 2007) $\quad \Delta_{m}=\sqrt{3 \sqrt{2}-4} \sqrt{\left(j / j_{c}\right)^{2}-1}$

(2)
(3)

LMU

Higgs
 Scalling of Low Frequency Response

$$
F\left(v, \frac{j}{j_{c}}\right)_{u}=A \Delta^{3-2 / v_{c}} \Phi\left(\frac{v}{\Delta}\right) \quad F\left(v, \frac{j}{j_{c}}\right)_{u}=A\left(1-\frac{j}{j_{c}}\right)^{-2} v^{3}
$$

Fit Function
$a v^{b}$
we obtain

$$
b=2.9(5)
$$

S. Sachdev. Quantum Phase Transitions. Cambridge University Press, Cambridge, (201I)
D. Podolsky, A. Auerbach, and D. P.Arovas. Phys. Rev. B 84, I74522 (20II)
D. Podolsky and S. Sachdev, Phys. Rev. B 86, 054508 (2012)

Full Spectral Response

Open theory question: what is the fate of Higgs mode towards weaker interactions?
\checkmark Selectively excite Higgs eigenmodes (larger system, spatial modulation)
\checkmark Probe Quantum Critical behaviour via Dynamical critical scaling

Higgs drum, spatial eigenmodes!
\checkmark Fate of mode at weaker interactions (towards GPE)
\checkmark Ratio of 'Higgs' mass to Mott gap
\checkmark Well defined mode down to critical point?
\checkmark Anderson-Higgs Mechanism via Coupling to (Dynamical) Gauge Field

Generation of Large Effective Magnetic Fields

M. Aidelsburger, M. Atala, S. Nascimbène, Yu-Ao Chen \& I. Bloch

Integer Quantum Hall Effect

$$
\sigma_{x y}=v e^{2} / h
$$

v Integer

Fractional Quantum Hall Effect

Laughlin state at $v=1 / 3$
! flux quantum $\phi_{0}=\mathrm{h} / \mathrm{ec}$

- electron

State of the Art

I) Rotation

In rapidly rotating gases, Coriolis force is equivalent to Lorentz force.

$$
\mathbf{F}_{\mathrm{L}}=q \mathbf{v} \times \mathbf{B} \Longleftrightarrow \mathbf{F}_{\mathrm{C}}=2 m \mathbf{v} \times \Omega_{\mathrm{rot}}
$$

K. Madison et al., PRL (2000)
J.R.Abo-Shaeer et al. Science (200I)
2) Raman Induced Gauge Fields

Spatially dependent optical couplings lead to a Berry phase analoguous to the Aharonov-Bohm phase
Y. Lin et al., Nature (2009)

State of the Art

I) Rotation

In rapidly rotating gases, Coriolis force is equivalent to Lorentz force.

Spatially dependent optical couplings lead to a Berry phase analoguous to the Aharonov-Bohm phase
Y. Lin et al., Nature (2009)

Artificial B-Fields with Ultracold Atoms

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

$$
\hat{H}=-\sum_{\mathbf{R}}\left(K \mathrm{e}^{i \varphi(\mathbf{R})} \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{x}}+J \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{y}}\right)+\text { h.c. }
$$

Magnetic flux through a plaquette:

$$
\phi=\int_{\square} B \mathrm{~d} S=\varphi_{1}-\varphi_{2}
$$

D. Jaksch \& P. Zoller, New J. Phys. (2003)
F. Gerbier \& J. Dalibard, New J. Phys. (2010)
E. Mueller, Phys. Rev. A (2004)
L.-K. Lim et al. Phys. Rev.A (2010)
A. Kolovsky, Europhys. Lett. (20II)
see also: lattice shaking
E. Arimondo, Phys. Rev. . Lett (2007)
K. Sengstock, Science (201I)

Artificial B-Fields with Ultracold Atoms

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

$$
\hat{H}=-\sum_{\mathbf{R}}\left(K \mathrm{e}^{i \varphi(\mathbf{R})} \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{x}}+J \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{y}}\right)+\text { h.c. }
$$

Magnetic flux through a plaquette:

$$
\phi=\int_{\square} B \mathrm{~d} S=\varphi_{1}-\varphi_{2}
$$

D. Jaksch \& P. Zoller, New J. Phys. (2003)
F. Gerbier \& J. Dalibard, New J. Phys. (2010)
E. Mueller, Phys. Rev. A (2004)
L.-K. Lim et al. Phys. Rev.A (2010)
A. Kolovsky, Europhys. Lett. (20II)
see also: lattice shaking
E.Arimondo, Phys. Rev. . Lett (2007)
K. Sengstock, Science (201I)

Artificial B-Fields with Ultracold Atoms

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

$$
\hat{H}=-\sum_{\mathbf{R}}\left(K \mathrm{e}^{i \varphi(\mathbf{R})} \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{x}}+J \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{y}}\right)+\text { h.c. }
$$

Magnetic flux through a plaquette:

$$
\phi=\int_{\square} B \mathrm{~d} S=\varphi_{1}-\varphi_{2}
$$

D. Jaksch \& P. Zoller, New J. Phys. (2003)
F. Gerbier \& J. Dalibard, New J. Phys. (2010)
E. Mueller, Phys. Rev. A (2004)
L.-K. Lim et al. Phys. Rev.A (2010)
A. Kolovsky, Europhys. Lett. (20II)
see also: lattice shaking
E.Arimondo, Phys. Rev. . Lett (2007)
K. Sengstock, Science (201I)

Artificicial B-Fields with Ultracold Atoms

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

Gauge Fields Harper Hamiltonian and Hofstadter Butterfly

Harper Hamiltonian: $J=K$ and ϕ uniform.

The lowest band is topologically equivalent to the lowest Landau level.
D.R. Hofstadter, Phys. Rev. B I 4, 2239 (1976)
see alo Y.Avron, D. Osadchy, R. Seiler, Physics Today 38, 2003

Staggered Flux Lattice

2D lattices - tunneling inhibited along the x-direction

Tunneling is restored with Raman beams

Staggered Flux Lattice

Staggered flux with zero mean

$\delta \boldsymbol{k}=\boldsymbol{k}_{1}-\boldsymbol{k}_{2}$
$K_{|\mathbf{0}\rangle \rightarrow|\mathrm{O}\rangle}(\mathbf{R})=K e^{i \delta \mathbf{k} \cdot \mathbf{R}}, \quad K_{|\bigcirc\rangle \rightarrow|\mathbf{0}\rangle}\left(\mathbf{R}^{\prime}\right)=K e^{-i \delta \mathbf{k} \cdot \mathbf{R}^{\prime}}$

Staggered Flux Lattice

Staggered flux with zero mean

$$
K_{(\mathbf{\bullet}\rangle \rightarrow|0\rangle}(\mathbf{R})=K e^{i \delta \cdot \mathbf{R}}, \quad K_{|\rho\rangle \rightarrow|\mathbf{0}\rangle}\left(\mathbf{R}^{\prime}\right)=K e^{-i \delta k \cdot \mathbf{R}^{\prime}}
$$

From the geometry of the Raman lasers (angle 90°, wavelength $\lambda=4 d_{x}=1534 \mathrm{~nm}$), we obtain:

$$
\phi=\frac{\pi}{2}
$$

Momentum Distribution (J=K)

Reference: cubic lattice (no Raman drive)

$$
J / K=1.0(1)
$$

OD (a.u.)

Due to the frustration introduced by the phase factors in $K(\boldsymbol{R})$, the condensation occurs at non-zero momenta.

Band Structure

Magnetic unit cell and Brillouin zone.

Band Structure

Magnetic unit cell and Brillouin zone.

Single-particle spectrum in the tight-binding approximation. From the magnetic translation symmetries:

$$
\psi_{\left|k_{x}, k_{y}\right\rangle}\left(\mathbf{R}=m \mathbf{d}_{\mathbf{x}}+n \mathbf{d}_{\mathbf{y}}\right)=\mathrm{e}^{i\left(m \cdot k_{x} d_{x}+n \cdot k_{y} d_{y}\right)} \times \begin{cases}\psi_{e} & m \text { even } \\ \psi_{o} \mathrm{e}^{i \frac{\pi}{2}(m+n)} & \text { modd }\end{cases}
$$

Band Structure

Magnetic unit cell and Brillouin zone.

Single-particle spectrum in the tight-binding approximation. From the magnetic translation symmetries:

$$
\psi_{\left|k_{x}, k_{y}\right\rangle}\left(\mathbf{R}=m \mathbf{d}_{\mathbf{x}}+n \mathbf{d}_{\mathbf{y}}\right)=\mathrm{e}^{i\left(m \cdot k_{x} d_{x}+n \cdot k_{y} d_{y}\right)} \times \begin{cases}\psi_{e} & m \text { even } \\ \psi_{o} \mathrm{e}^{i \frac{\pi}{2}(m+n)} & \text { modd }\end{cases}
$$

An eigenstate $\left|k_{x}, k_{y}\right\rangle$ has two momentum components

We consider again J=K.

Dispersion Relation

Magnetic Brillouin Zone

see hexagonal lattices: L. Tarruell et al. Nature (2012)

Gauge Fields Probing the Quantum Motion in the Magnetic Field

Classical:
Charged particle in magnetic field

Classical:
Charged particle in magnetic field

Quantum Analogue:

Initial State:
Single Atom in the ground state of a tilted plaquette.

$$
\left|\psi_{0}\right\rangle=\frac{|A\rangle+|D\rangle}{\sqrt{2}}
$$

Switch on Raman coupling to induce tunneling

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.

We plot the mean atom position during the evolution.
Deviation from $\pi / 2$ due to geometric reasons.

Quantum cyclotron orbit allows us to measure the applied flux!

$$
\phi=0.73(5) \frac{\pi}{2}
$$

We plot the mean atom position during the evolution.
Deviation from $\pi / 2$ due to geometric reasons.

Quantum cyclotron orbit allows us to measure the applied flux!

$$
\phi=0.73(5) \frac{\pi}{2}
$$

Quantum Matter at Negative Absolute Temperature

S. Braun, J.-P. Ronzheimer, M. Schreiber, S. Hodgman, T. Rom, D. Garbe, IB, U. Schneider

Positive Temperature

Positive Temperature

Thermodynamic theorems apply in negative as well as positive temperature regime!

Thermodynamic theorems apply in negative as well as positive temperature regime!

For positive temperatures, we require lower energy bound $\mathrm{E}_{\text {min }}$!

For negative temperatures, we require upper energy bound $\mathrm{E}_{\text {max }}$!

Requirements

Norman Ramsey (1915-201I)

Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures

As discussed in Sec. III below, the conditions for the existence of a system at negative temperatures are so restrictive that they are rarely met in practice except with some mutually interacting nuclear spin systems.
E.M. Purcell \& R.V. Pound, Phys. Rev. 8 I, 279 (I95I)
N. Ramsey, Phys. Rev. I03, 20 (1956)
M.J. Klein, Phys. Rev. I 04, 589 (I956)
P. Hakonen \& O.V. Lounasmaa, Science, 265, I82I (I994)

Requirements

Norman Ramsey (1915-201I)

PHYSICAL REVIEW
VOLUME 103, NUMBER 1
JULY 1, 1950
Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures

E.M. Purcell \& R.V. Pound, Phys. Rev. 8 I, 279 (I95I)
N. Ramsey, Phys. Rev. I03, 20 (1956)
M.J. Klein, Phys. Rev. I 04, 589 (I956)
P. Hakonen \& O.V. Lounasmaa, Science, 265, I82I(I994)

LMU

Requirements

Norman Ramsey (1915-201I)

PHYSICAL REVIEW
VOLUME 103. NUMBER 1
JULY 1, 1956
Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures

Harvard University, Cambridge, Massachuselts, and Clarendon Laboratory, Oxford, England (Received March 26, 1956)

Highest Energy State Emax
E.M. Purcell \& R.V. Pound, Phys. Rev. 8 I, 279 (I95I)
N. Ramsey, Phys. Rev. I 03, 20 (1956)
M.J. Klein, Phys. Rev. I 04, 589 (I956)
P. Hakonen \& O.V. Lounasmaa, Science, 265, I82I (I994)

Requirements

PHYSICAL REVIEW
VOLUME 103 , NUMBER 1
JULY 1, 1956
Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures

Can we achieve negative temperatures for motional degrees of freedom?

Highest Energy State $E_{\max }$
E.M. Purcell \& R.V. Pound, Phys. Rev. 8 I, 279 (I95I)
N. Ramsey, Phys. Rev. I03, 20 (1956)
M.J. Klein, Phys. Rev. I 04, 589 (I956)
P. Hakonen \& O.V. Lounasmaa, Science, 265, I82I (I994)

Energy Bounds of the BH Model

$$
\hat{H}=-J \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)+V \sum_{i} \mathbf{R}_{i}^{2} \hat{n}_{i}
$$

$\mathrm{U}, \mathrm{V}<0$ required for upper energy bound!

Entropy vs Energy

Experimental Sequence

Superfluid

nomars
$T, U, V>0$
Sequence: A. Rapp, S. Mandt \& A. Rosch, PRL (2010)

Experimental Sequence

Mott Insulator

Superfluid

honor
$T, U, V>0$
Sequence: A. Repp, S. Mandt \& A. Rosch, PRL (2010)

Experimental Sequence

Atomic Limit Mott Insulator

Superfluid

hamor
$T, U, V>0$
Sequence: A. Rapp, S. Mandt \& A. Rosch, PRL (2010)

Experimental Sequence

Sequence: A. Rapp, S. Mandt \& A. Rosch, PRL (2010)

Experimental Sequence

$$
U \xrightarrow{\prime \prime} \rightarrow-U \quad V \stackrel{\mu}{\rightarrow}-V
$$

Atomic Limit Mott Insulator
 Unauno macour

Superfluid

hamor
$T, U, V>0$

Mott Insulator

Monton Superfluid

rionn
$T, U, V<0$

Sequence: A. Rapp, S. Mandt \& A. Rosch, PRL (2010)

0 Optical density (a. u.) 1

Experimental Results

Positive Temperature w/o switching

0 Optical density (a. u.) 1

Experimental Results

Collapse of Condensate

For attractive interactions ($\mathrm{a}<0$), condensate collapses!

E.A. Donley et al. Nature 4 I 2, 295-299 (200I)
J. M. Gerton et al. Nature 408, 692 (2000)

Negative Temperature State as Stable as Positive Temperature State!

Occupation of Energy States

$$
n\left(q_{x}, q_{y}\right)=\frac{1}{e^{\left(E_{k i n}\left(q_{x}, q_{y}\right)-\mu\right) / k_{B} T}-1}
$$

$$
E_{k i n}\left(q_{x}, q_{y}\right)=-2 J\left[\cos \left(q_{x} d\right)+\cos \left(q_{y} d\right)\right]
$$

Occupation of Energy States

$$
T=-2.2 / / \mathrm{k}_{\mathrm{B}}
$$

Kinetic energy of Bloch wave (J)

$$
n\left(q_{x}, q_{y}\right)=\frac{1}{e^{\left(E_{k i n}\left(q_{x}, q_{y}\right)-\mu\right) / k_{B} T}-1}
$$

$$
E_{k i n}\left(q_{x}, q_{y}\right)=-2 J\left[\cos \left(q_{x} d\right)+\cos \left(q_{y} d\right)\right]
$$

LMU

Implications

Gases with negative temperature possess negative pressure!

$$
\begin{gathered}
\left.\frac{\partial S}{\partial V}\right|_{E} \geq 0 \quad \text { and } \quad d E=T d S-P d V \\
\left.\quad \longrightarrow \frac{\partial S}{\partial V}\right|_{E}=\frac{P}{T} \geq 0
\end{gathered}
$$

Implications

Gases with negative temperature possess negative pressure!

$$
\begin{gathered}
\left.\frac{\partial S}{\partial V}\right|_{E} \geq 0 \quad \text { and } \quad d E=T d S-P d V \\
\left.\quad \leadsto \frac{\partial S}{\partial V}\right|_{E}=\frac{P}{T} \geq 0
\end{gathered}
$$

Carnot engines above unit efficieny!

$$
\eta=\frac{W}{Q_{1}}=1-\frac{T_{2}}{T_{1}}
$$

Gases with negative temperature possess negative pressure!

$$
\begin{gathered}
\left.\frac{\partial S}{\partial V}\right|_{E} \geq 0 \quad \text { and } \quad d E=T d S-P d V \\
\\
\left.\longrightarrow \frac{\partial S}{\partial V}\right|_{E}=\frac{P}{T} \geq 0
\end{gathered}
$$

Carnot engines above unit efficieny!

$$
\eta=\frac{W}{Q_{1}}=1-\frac{T_{2}}{T_{1}}
$$

Some statements for the second law of thermodynamics become invalid!

Negative Temperature Team

Simon Braun

Philipp Ronzheimer

Michael Schreiber

Ulrich Schneider

Thank you for your attention! wwwe quantum-munichide

