

The CRESST Experiment

Status and Prospects of Low-Mass Dark Matter Search

Raimund Strauss

Max-Planck-Institut für Physik München, Project Review 14.12.2015

of Sciences

Dark Matter

Dark Matter exists in the Universe!

WIMPs

Weakly Interacting Massive Particles

Particles are a well-motivated interpretation

Elastic WIMP-nucleus scattering

Direct detection with Earth-bound experiments

Raimund Strauss, MPI Munich

Dark Matter

Dark Matter exists in the Universe!

Particles are a well-motivated interpretation

Direct detection with Earth-bound

experiments

Raimund Strauss, MPI Munich

Current Status of Direct Dark Matter Searches

Raimund Strauss, Project Review 2015

Current Status of Direct Dark Matter Searches

Raimund Strauss, Project Review 2015

The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

- Underground installation
- Ultra-low background environment
- Cryogenic detectors (10-15mK)

Raimund Strauss, Project Review 2015

CaWO₄ Target Crystal

- scintillating
- multi-element target
- mass: 200 300 g

¹⁶O ⁴⁰Ca ¹⁸⁴W

In-house production and processing at our institutes

Light Absorber for scintillation-light detection

- silicon-on-sapphire disc
- diameter: 40mm
- thickness: 500µm

Transition-Edge-Sensors → 2 independent calorimeters

Phonon detector (CaWO₄)

- Threshold: $E_{th} \ge 300 \text{ eV}$
- Resolution: $\sigma \approx 60-200 \text{ eV}$

Light detector (SOS)

• Resolution : $\sigma \approx 5 \text{eV}$

Phonon-Light Technique

Phonon-Light Technique

Polymeric Foil

- (1) Highly reflective
 - light collection
- 2 Scintillating
 - rejection of surface events

STATE-OF-THE-ART

Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: "TUM-40"

- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: "Lise"

- Incomplete surface rejection
- Lowest threshold
- Factor ~2 higher background

"TUM-40": New Detector Design

Polymeric foil + CaWO₄ sticks

- Fully-scintillating detector housing
- Efficient rejection of surface backgrounds

For details see recent publication: *R. Strauss et al. arxiv:1410.1753 EPJ-C (2015)*

"TUM-40": Unprecedented Radiopurity

- CaWO₄-crystal production at TU Munich
- Unprecedented radiopurity (by factor 2-10)
- Room for further improvements

"TUM-40": Unprecedented Radiopurity

- CaWO₄-crystal production at TU Munich
- Unprecedented radiopurity (by factor 2-10)
- Room for further improvements

Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: "TUM-40"

- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: "Lise"

- Incomplete surface rejection
- Lowest threshold
- Factor ~2 higher background

"Lise": Trigger Threshold

Direct measurement of nuclear-recoil energy with calorimetric detector!

"Lise": Results 2015

Future of Dark Matter Searches

Raimund Strauss, Project Review 2015

NEAR FUTURE

CRESST III

CRESST-III: Low-Mass WIMP Search

Straight-forward approach for near future: **CRESST-III** Phase 1

Status quo

m = 250g V = 32x32x40 mm³

Phonon threshold: $E_{th} \lesssim 500 eV$ Light-detector res.: $\sigma \approx 5 eV$

CRESST-III: Low-Mass WIMP Search

Straight-forward approach for near future: CRESST-III Phase 1

CRESST-III Phase 1

CRESST-III Detector Prototype

CRESST-III Detector Prototype

First modules ready

First Results of CRESST-III Detector

Gamma event of ≈40keV in stick 0.8 Preliminary Stick signal 0.6 amplitude (V) 0.2 (light signal) 0 - Ward of the second se 10 20 -20 -10 0 30 40 Absorber signal time (ms) TES

Raimund Strauss, Project Review 2015

Timeline for CRESST-III

Phase 1:

- Prototype detectors ready
- Production of ~ 15 modules ongoing
- All parts ready
- Assembly & mounting Jan 2015
- Start Feb 2016

Mounting in Progress...

First module for CRESST-III phase 1 assembled one week ago! New dedicated cleanroom at MPI

CRESST-III Phase 2

Reduce intrinsic background level of crystals!

- Growth of CaWO₄ crystals in-house (TUM)
- All production steps under control
- Improvement by factor 10 already achieved
- Cleaning procedure e.g. by re-crystallization, chemical purification of raw materials

REALISTIC GOAL (in 2 years):

Reduction of background level to 10^{-2} counts /[kg keV day] (2 orders of magnitude compared to present CaWO₄ crystals)

100 x 24g detectors of improved quality operated for 2 year \approx 1000 kg-days (net)

Recent Exciting Progress at TUM

First steps in chemical purification of CaCO₃ powder:

- Measurements indicate purification
 - Th contamination decreased by factor 2-7
 - ➤ U contamination decreased by factor 15-35
- Crystal growth successful

Raw ingot enough for 3-4 CRESST-III detectors

• Two such crystals will be implemented already to CRESST-III phase 1 !!

Summary

- CRESST technology proved high potential for low-mass WIMP search
 - Lowest thresholds in the field: 300eV
 - Nuclear-recoil energy scale precisely known
 - Background discrimination down to low energies \checkmark
 - Efficient rejection of surface backgrounds \checkmark
 - Multi-element target \checkmark
- **CRESST-II** probed new region of parameter space for • WIMP masses below $3GeV/c^2$
- **CRESST-III** has unique potential to explore low-mass WIMP region start: Jan 2016
 - Threshold of <=100eV reached with prototype detector
 - iStick technology to reject holder-related events \checkmark
 - First crystals of improved quality already in phase 1 \checkmark

BACKUP SLIDES

Crucial: Energy Threshold

Old TES design for 300g crystals:

- **bolometric** operation
- large collection area
- strong thermal coupling to bath
- not optimized for low threshold !

Crucial: Energy Threshold

New TES design for 24g crystals:

- calorimetric operation
- Similar to CRESST light detector
- W film: 8 times smaller
- weak thermal coupling to bath
- large-area Al phonon collectors

Thresholds of Cryogenic Experiments

Efficient Veto of Surface Backgrounds

49

TUM-40: Surface Backgrounds

exposure: 29 kg-days

Lise: Low Energy Spectrum

Lise: Detector Efficiency

Lise: Observed Events

