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Luminosity evolution

o After consolidation of LHC magnet interconnections restart of the LHC
at /s =13 TeV in 2015.
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o Maximum peak luminosity of half the LHC design luminosity reached at
the end of the taking period.
o pp data recorded by ATLAS: 4.00 fb~! at data taking efficiency of 92%.






High-mass di-jet event (m;; = 8.8 TeV)
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Rediscovery of known resonances at /s = 13 TeV
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o One of the first public results: from
the MPP muon group.

o J/Yp = putpTand Z — putus
decays immediately used for muon
efficiency measurement.
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Detector efficiency

Fraction of working channels
Inner tracker | Calorimeters | Muon spectrometer
Pixel SCT TRT | LAr Tile | MDT RPC CSC TGC

All subsystem with efficiencies
close or equal to 100%!

98.5 99.7 100 99.1 100 100 993 100 100

Origin of the reduced pixel efficiency (98.5%)

1.E-06

o Pixel inefficiency attributed to the new
inner pixel layer (IBL).
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o IBL temporarily was switched off at the
occurance of too high leakage currents
caused by the transistors of the read-out
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Detector operation and performance

Impact parameter resolution
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Substantial improvement of the impact parame-
ters resolution thanks to the new additional inner
pixel layer commissioned under MPP leadership.

MPP responsibility: muon calibration.
o Muon calibration centre.
o Muon efficiency measurement.

o Muon momentum scale and resolution.



The roadmap to High-Luminosity LHC

o Plan to increase the LHC luminosity by an order of magnitude.

o Physics motivation and interests of the MPP group on the next 3 slides.

o Increase of the particle fluxes/rates by an order of magnitude from the LHC to the
HL-LHC requires a major detector upgrade.
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Higgs physics at the HL-LHC

o Precision measurements of Higgs boson couplings and spin-CP quantum numbers
as a probe for physics beyond the Standard Model.
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Supersymmetric and other new particles at the HL-LHC

Search for supersymmetric particles

3 ATLA imulation Prelimii
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o Sensitivity to 1.5 times larger neutralino and
chargino masses in WZ-mediated SUSY at
the HL-LHC than the LHC.

o If SUSY is found at the LHC, the HL-LHC

%0 300 400" 560 600 700 soo. 900 1000 1100 1200 needed to study its exact nature.
m=m [GeV]

Model independent search for heavy resonances (di-jet, di-photon #¢, tt)
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o Di-jet resonances predicted by several
theories, e.g. excited quarks, quantum black

holes.
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Dark matter at the HL-LHC

Search for dark matter in Higgs boson decays
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matter: H — invisible. 10 -
. . . as e E
o Direct search in vector boson fusion and W/Z 10 a1
associated Higgs boson production. 0Tl 51670, 000"
. . . . 10'495 ........... 5= 'e, = A 7:
95% confidence upper limits on BR(H — inv.) e ooz AL .
Run1 [ LHC [ HL-LHC " F e maemeayy
049 | 022 013 107 o Gocon (007 = s wie )
10%° :giﬁggé%g?éféb) ----- Vector WIMP ~ —
. . . -y ]
o Indirect search via precision measurement of L
Higgs boson couplings. 1 10 10° m [Ge\1/?3
_ jet, y, Wiz
. . . . q X
Search for dark matter production in association
with Standard Model particles
Similar increase in sensitivity from LHC to HL-LHC as above.
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Phase-l BMG muon chamber upgrade

In 2017 installation of 12 new BMG small drift-tubes precision muon
chambers in the detector feet to improve the muon momentum resolution.

700 (4]

" ATLAS-MDT Il

10 times higher high-rate
capability than present MDT
chambers.

Needed because of increased
background rates in muon
spectrometer at HL-LHC.

small drift-tube muon (sMDT) chamber

ATLAS muon upgrade coordinator: O. Kortner.
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Production and test of drift tubes at MPP

0 Semi-automated drift-tube assembly and test performed at MPP by
technicians from IHEP Protvino.

o Production of 4200 drift tubes for all BMG chambers including module 0
is completed.

o Only 4% of the tubes fail the standard ATLAS quality criteria.

Endplug and wire insertion Wire tensioning, tension measurement

o Spacer frames for BMG chambers produced at IHEP Protvino.

PhD theses: Korbinian Schmidt-Sommerfeld, Philipp Schwegler.
Bachelor thesis: J. Corella Puertas.
12



Status of BMG chamber production at MPP

o September 2015 - October 2016:
Series production.

o Module 0 4+ 2 series chambers
produced so far.

o 3" series chamber in production.

14



Wire position accuracy

o Tube reference surfaces accessible in chambers thanks to endplug design.
= Possibility of measuring the wire positions with a coordinate measurement machine.

Wire locator (brass spiral)

Plastic insulator
45

Anode wire

4 10

External reference surface for wire positioning

o
G =(4.840.2) pm
(RMS: 5.5 pm)
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Unprecedented wire positioning accuracy of 5 um

4 times higher accuracy than in present MDT chambers.

Most precise wire chamber!‘

Fr T T T T T T T T T T R
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sMDTs presently only technology for precision
0 B 0 o0s oos muon tracking at future hadron colliders (FCC).

Distance of wire from nominal position [mm]
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Phase-| BIS-7/8 muon chamber upgrade

Inner end-cap wheel
(NSW)

0 16 new muon stations inside the
barrel toroid coils at the boundary
between barrel and end caps.

o Purposes:

e Improvement the selectivity of
the muon trigger in the barrel
end-cap transition region.

e Increase of high-rate capability.

Technology:

e SMDT chambers for precision
tracking.

e New thin-gap resistive plate
chambers (RPC) for triggering.

Installation during LS2 (2019-2020).

o

BIS-7/8
sMDT-RPC
muon stations

o

ATLAS-MDT Il

1A



Design of BIS-7/8 sMDT and RPC chambers at MPP

o Integrated BIS 7/8 sMDT and
RPC design.

o Development of new thin-gap
-8 Cut-outs fo NSW support brackets RPCs with 10 times better
high-rate capability than
present RPCs.

o Thin-gap RPCs presently only

8 Rail bearings on barrel toroid,

separate for sMDT and RPC technology with high-enough

time resolution for muon
Extended inner sMDT triggers at future hadron
multilayer to maximize colliders.

coverage
o RPC prototype planned for
early 2016.
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Phase-Il upgrade of the ATLAS detector for HL-LHC

ATLAS detector at the HL-LHC

44m

Tile calorimeters

LAr hadronic end-cap and

new forward
calorimeter
LAr electromagnetic calorimeters

Calorimeters

New all-silicon
inner detector

Muon chambers Toroid magnets;

Solenoid magnet
Muon spectrometer

Inner fracking detector

+ new electronics for new trigger architecture
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MPP contribution to the upgrade of the muon spectrometer

Electronics upgrade

o At the HL-LHC the ATLAS experiment will adopt a new two-level
trigger architechture consisting of the first-level and the high-level
trigger.

o0 Rate of first level: 1 MHz. Latency of first level: 6 us.

= The present muon drift-tube (MDT) chamber read-out chain is
incompatible with the new trigger architecture and needs to be replaced.
= Opportunity to incorporate the MDT in the first trigger level.

Muon chamber upgrade

o To sustain high muon trigger efficiency installation of new thin-gap
RPCs+sMDT chambers with excellent high-rate capability.

Role of the MPP group

o Muon HL-LHC upgrade projects initiated by the MPP group.

o Leading role in R&D.

o MPP contribution crucial to the success of the muon spectrometer
upgrade.

10



Upgrade of the MDT front-end electronics

So farin ATLAS only MPP has worked on the
new MDT read-out chain:

PEbEERBORBIEORIR IR Y

New ASD chip CSM demonstrator
on testing board

PhD theses: S. Nowak, K. Schmidt-Sommerfeld
ards with ASD and TDC chipg Bachelor theses: S. Annies und C. Schmid

o The MPP group will design and produce the new ASD and TDC chips in
2019 and 2020.
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Need to integrate of the MDT data in the 1¢ trigger level

Inclusive muon cross section Muon first-level trigger efficiency
Master thesis P. Gadow
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o The interesting electroweak physics is mainly at pr > 20 GeV.
o The inclusive muon cross section is very steeply rising with decreasing pr.

o Present 1st level 20 GeV muon trigger accepts a lot of muons with
10 GeV< pr <20 GeV due limited spatial resolution of trigger chambers.

= Sharpening of trigger turn-on curve by the use of precision muon
drift-tube (MDT) chambers to limit the trigger rate.
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MDT muon trigger concept

= Hit cluster in trigger chambers
3 Region of interest defined by the trigger chambers hits

UseTBI\X and BO MDT cham|

with ~0.5 mm precision

bers for a
3-ppint sagitta measurement/  ppeg

EML

[\

BOL

Usé the NSW, EM, an
deflection measurem

fora

EOL

ith ~0.5 mm precision

New small wheel

14

Bi§ wheel

1 1 1 z
16 18 20 m

o Continuous stream of MDT hit data to off-detector MDT trigger processors.

o Use of MDT hits for the refinement of muon pt measurement in regions of interest
defined by the trigger chambers.

o MPP contribution: Design and production of MDT trigger processors.
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Reinforcement of the barrel muon trigger

o

o
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T

fosl
o
T T

o Muon spectrometer will be exposed to a ten
times higher background of neutrons and v rays
than at the LHC.
M oid RPC

[ e = The present RPCs can only be operated with
I - eirecia significantly reduced efficiency.
-1 -0.5 0 0.5 1

N
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1st level efficiency wrt offline [%]
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o
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n

o Installation of additional RPCs with increased high-rate
capability in the inner barrel layer to recuperate the
reduced muon trigger efficieny.

o Replacement of MDT chambers with sMDT chambers in
small barrel sectors to free space for RPCs.

o MPP contribution:

o Design of RPCs and sMDT chambers.
o Production of 50% of the sMDT chambers.
o Pilot project: BIS-7/8.
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All-silicon inner tracker for HL-LHC

Layout of a new all-silicon inner tracker
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o Challenging environment

— z[m]

e High radiation level of ~ 10'6 n.,cm~2.
e 200 inelastic pp collisions per bunch crossing.

o MPP contributions

e Optimization of the pixel sensor design.

Assembly of pixel modules.

Design and construction of parts of the CO, cooling system.
A. Macchiolo: ATLAS pixel sensor upgrade co-coordinator.
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Optimization of the production of thin planar sensors

thick wafer

0 Use of 50-150 pum thin pixel sensors to
avoid loss of charge carriers by trapping
and to minimize the inner detector’s
material budget.

front side
processing (1)
---------- back side
cavity etching

o Standard production techniques use

back side

/ \ 4 \ processing handle wafers which have to be removed
after sensor production.
e e v front side
y \ 4 \___ processing ) o No handle wafer needed by the cheaper
Y vy Y and easier wet etching technique
————_ = — dicing developed by MPP and company CIS.
ay \ | 4 N

‘ Process successfully demonstrated with first 4” wafer production!
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Maximizing the active sensor area by active edges

I DUICON OXI0E I 150F0R GOPING 0 FNOSPAOIUS d0pINg Q NO Overlap Of p|Xe| sSensors |n Z
direction due to lack of space.

Edge implantation
50 pm 50 pm

\ — —
\ GR n GR /
Sensor  p-subsiate

Support wafer

et e e e o Potential solution: Pixel sensors
with active edges.
o Production of sensors with active edges by MPP at the company
ADVACAM completed recently.

Doctoral thesis S. Terzo

= Need to minimize the inactive
area in z direction!

100 pm‘

S u
-
S 80
b
E ; . i o Evaluation of the sensors ongoing.
ixel edge | sensor edge . . . .
a0 N N\ o First results show significant increase in
£ - 1 sensitive area!
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Optimization of the ground pad grid

Way of applying the ground pads before interconnection to chips influences

the efficiency close to the connection points.

Standard punch-through Optimized (common) punch-through

Doctoral thesis M. Sa\ﬂé
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In-pixel hit efficiency Tk

100
80
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40

Track x [m]

Track y [m]
w
8

Increase of pixel effi-
ciency from 95.6% to
99.4% with the opti-
mized punch-through!
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Upgrade of the forward calorimeter (FCAL)

Assembly of present FCAL Schematic drawing of the electrode

e

Copper Tube
5.25 mm 1D

- PEEK Fiber
. 0.25 mm OD

Coppet Ro
4.75 mm OD

'\
~ 250 pm gap filled with liquid argon

Limitations of the present FCAL at the HL-LHC

o Build-up of positive ions in the liquid argon gaps leads to distorted signals.
o Increased heat in the FCAL can lead to the formation of argon bubbles (boiling)

making the FCAL inoperable.
= Replacement of the present FCAL by a new FCAL with smaller LAr gaps and higher

granularity to mitigate the pile-up effects.
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Optimization of the forward calorimeter granularity

Higher granularity of FCAL need to cope with much increased pile-up level at HL-LHC.

Present FCAL
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MPP contributions to the calorimeter upgrade

o R&D for a new hlgh granularlty FCAL with ~ 100 pm liguid argon gaps.
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Proton beam test results
o FCAL 269 um gaps: Drop of
pulse height for beam
intensities > 10° protons/s.
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o Production of 25% of the sFCAL modules.

o Development and production of new radiation hard low-voltage power
supplies for the hadronic end-cap calorimeter.

Pulse Height, ADC/proton

-
T
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o S. Menke: ATLAS liquid Argon electronics upgrade co-cordinator.
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Operation of the ATLAS detector at the LHC

o Successful restart of the LHC at /s =13 TeV in 2015.
o 4 fb~! of pp collision data recorded with a fully functional detector at
>90% data taking efficiency.

Upgrade of the ATLAS detector for HL-LHC

o LHC and HL-LHC will dominate accelerator particle physics for the next
20 years.

0 Leading role of the MPP group in the ATLAS upgrade projects for
HL-LHC.

o Detector R&D for HL-LHC has also high impact on experiments at
future hadron colliders.
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TID effects in IBM 130nm NMOS transistor

TID gives origin to two types of defects:
« Trapped positive charge in the bulk of the oxide
* Interface traps

Trapped positive charge in the bulk of the
(Shallow-Trench-Isolation) STI oxide at the edge of

the NMOS gives origin to the source-drain leakage
current. Such current as TID accumulate shows a

peaks at ~ 2-3Mrad (at room T and high dose rate)

Inversion layer

Interface traps are filled with electron in NMOS

structures, so this layer of negative charge
compensates for the effect of trapped hoes in the

\ / bulk of the STI = Leakage current decreases !

Layer of interface traps with

trapped electrons These phenomena are dose rate and temperature

dependent. 6



