A quantum picture of de Sitter spacetime

Sebastian Zell

Work with Gia Dvali and César Gomez

MPP Project Review 2015

14th December 2015

- Idea: The world is fundamentally quantum
- \Rightarrow Classical solution = collective effect of appropriate quanta (corpuscules)¹

¹ G. Dvali and C. Gomez, *Quantum Compositeness of Gravity: Black Holes, AdS and Inflation*, arXiv:1312.4795.

- Idea: The world is fundamentally quantum
- \Rightarrow Classical solution = collective effect of appropriate quanta (corpuscules)¹
 - Tehseen's talk: Solitons as corpuscular bound states²
- \Rightarrow Topological properties determined by number of corpuscules

- ¹ G. Dvali and C. Gomez, *Quantum Compositeness of Gravity: Black Holes, AdS and Inflation,* arXiv:1312.4795.
- ² G. Dvali, C. Gomez, L. Gründing and T. Rug, *Towards a Quantum Theory of Solitons*, arXiv:1508.03074.

2 Application to Particle production

The quantum state of de Sitter $_{\odot OO}$

Application to Particle production 00

Outlook 0

De Sitter metric

• Cosmological constant $\Lambda (\propto H^2)$

The quantum state of de Sitter $_{\odot OO}$

Application to Particle production $_{\rm OO}$

Outlook 0

De Sitter metric

- Cosmological constant $\Lambda \ (\propto H^2)$
- Metric for small times:

$$\mathrm{d}s^2 = (1 + \Lambda t^2)(\mathrm{d}t^2 - \mathrm{d}\vec{x}^2) + \dots$$

The quantum state of de Sitter $_{\odot OO}$

Application to Particle production 00

Outlook 0

De Sitter metric

- Cosmological constant A ($\propto H^2$)
- Metric for small times:

$$\mathrm{d}s^2 = (1 + \Lambda t^2)(\mathrm{d}t^2 - \mathrm{d}\vec{x}^2) + \dots$$

• Canonically normalized Newtonian potential

$$\Phi = \frac{M_p}{2} \Lambda t^2$$

The quantum state of de Sitter $\bullet \circ \circ$

Application to Particle production $_{\rm OO}$

Outlook 0

De Sitter metric

- Cosmological constant $\Lambda~(\propto H^2)$
- Metric for small times:

$$\mathrm{d}s^2 = (1 + \Lambda t^2)(\mathrm{d}t^2 - \mathrm{d}\vec{x}^2) + \dots$$

Canonically normalized Newtonian potential

$$\Phi = \frac{M_p}{2} \Lambda t^2$$

• Goal: Obtain Φ as classical limit of a graviton bound state

Application to Particle production 00

Outlook 0

Bound-state gravitons

- Two different Fock spaces:
 - $\hat{a}_{\vec{L}}^{\dagger}$ creates **free** gravitons.
 - $\hat{b}_{\vec{k}}^{\dagger}$ creates **bound-state** gravitons.

Application to Particle production 00

Outlook 0

Bound-state gravitons

- Two different Fock spaces:
 - $\hat{a}_{\vec{k}}^{\dagger}$ creates **free** gravitons.
 - $\hat{b}^{\dagger}_{\vec{k}}$ creates **bound-state** gravitons.

Claim

Bound-state graviton
$$(m = 0) =$$
 Free graviton $(m = \sqrt{\Lambda})$

Application to Particle production 00

Outlook 0

Bound-state gravitons

- Two different Fock spaces:
 - $\hat{a}_{\vec{L}}^{\dagger}$ creates **free** gravitons.
 - $\hat{b}_{\vec{k}}^{\dagger}$ creates **bound-state** gravitons.

Claim

Bound-state graviton (m = 0) = Free graviton $(m = \sqrt{\Lambda})$

- Conditions on the quantum state $|N_{\Lambda}\rangle$:
 - Spatially homogeneous \Rightarrow 0 momentum
 - Maximally classical \Rightarrow Coherent state

Application to Particle production 00

Outlook 0

Bound-state gravitons

- Two different Fock spaces:
 - $\hat{a}_{\vec{L}}^{\dagger}$ creates **free** gravitons.
 - $\hat{b}^{\dagger}_{\vec{k}}$ creates **bound-state** gravitons.

Claim

Bound-state graviton (m = 0) = Free graviton $(m = \sqrt{\Lambda})$

- Conditions on the quantum state $|N_{\Lambda}\rangle$:
 - Spatially homogeneous \Rightarrow 0 momentum
 - Maximally classical \Rightarrow Coherent state
- Only free parameter left: $N \propto \langle N_{\Lambda} | b_{\vec{0}} b_{\vec{0}}^{\dagger} | N_{\Lambda} \rangle$

Classical limit

- Expectation value in Hubble patch:
 - $\langle \textit{N}_{\Lambda}|\hat{\Phi}|\textit{N}_{\Lambda}\rangle$

Application to Particle production 00

Outlook 0

Classical limit

• Expectation value in Hubble patch:

$$\langle N_{\Lambda} | \hat{\Phi} | N_{\Lambda} \rangle = \langle N_{\Lambda} | \int_{\vec{k}} \left(\hat{b}_{\vec{k}} e^{-i\omega_{\vec{k}} t} e^{i\vec{k}\cdot\vec{x}} + \text{h.c.} \right) | N_{\Lambda} \rangle$$

Application to Particle production 00

Outlook 0

Classical limit

• Expectation value in Hubble patch:

$$\langle N_{\Lambda} | \hat{\Phi} | N_{\Lambda} \rangle = \langle N_{\Lambda} | \int_{\vec{k}} \left(\hat{b}_{\vec{k}} e^{-i\omega_{\vec{k}} \cdot t} e^{i\vec{k}\cdot\vec{x}} + \text{h.c.} \right) | N_{\Lambda} \rangle$$
$$= \sqrt{\Lambda} \left(\sqrt{N} e^{-i\sqrt{\Lambda}t} + \text{h.c.} \right)$$

Application to Particle production 00

Outlook 0

Classical limit

• Expectation value in Hubble patch:

$$\langle N_{\Lambda} | \hat{\Phi} | N_{\Lambda} \rangle = \langle N_{\Lambda} | \int_{\vec{k}} \left(\hat{b}_{\vec{k}} e^{-i\omega_{\vec{k}} \cdot t} e^{i\vec{k} \cdot \vec{x}} + \text{h.c.} \right) | N_{\Lambda} \rangle$$

$$= \sqrt{\Lambda} \left(\sqrt{N} e^{-i\sqrt{\Lambda}t} + \text{h.c.} \right)$$

$$= \sqrt{\Lambda N} \left(1 + \frac{1}{2} \Lambda t^{2} + O(\Lambda^{2} t^{4}) \right)$$

Application to Particle production 00

Outlook 0

Classical limit

• Expectation value in Hubble patch:

$$\langle N_{\Lambda} | \hat{\Phi} | N_{\Lambda} \rangle = \langle N_{\Lambda} | \int_{\vec{k}} \left(\hat{b}_{\vec{k}} e^{-i\omega_{\vec{k}} \cdot t} e^{i\vec{k} \cdot \vec{x}} + \text{h.c.} \right) | N_{\Lambda} \rangle$$

$$= \sqrt{\Lambda} \left(\sqrt{N} e^{-i\sqrt{\Lambda}t} + \text{h.c.} \right)$$

$$= \sqrt{\Lambda N} \left(1 + \frac{1}{2} \Lambda t^{2} + O(\Lambda^{2} t^{4}) \right)$$

 \Rightarrow Choose

$$N = \frac{M_p^2}{\Lambda}$$

ł

Application to Particle production 00

Outlook 0

Classical limit

• Expectation value in Hubble patch:

$$\langle N_{\Lambda} | \hat{\Phi} | N_{\Lambda} \rangle = \langle N_{\Lambda} | \int_{\vec{k}} \left(\hat{b}_{\vec{k}} e^{-i\omega_{\vec{k}} \cdot t} e^{i\vec{k} \cdot \vec{x}} + \text{h.c.} \right) | N_{\Lambda} \rangle$$

$$= \sqrt{\Lambda} \left(\sqrt{N} e^{-i\sqrt{\Lambda}t} + \text{h.c.} \right)$$

$$= \sqrt{\Lambda N} \left(1 + \frac{1}{2} \Lambda t^{2} + O(\Lambda^{2} t^{4}) \right)$$

 \Rightarrow Choose

$$N = \frac{M_p^2}{\Lambda}$$

 \Rightarrow Quantum state $|N_{\Lambda}\rangle$ reproduces classical metric Φ :

 $\langle \textit{N}_{\Lambda}|\hat{\Phi}|\textit{N}_{\Lambda}\rangle=\Phi$

Application to Particle production 00 Outlook 0

Classical limit

• Expectation value in Hubble patch:

$$\langle N_{\Lambda} | \hat{\Phi} | N_{\Lambda} \rangle = \langle N_{\Lambda} | \int_{\vec{k}} \left(\hat{b}_{\vec{k}} e^{-i\omega_{\vec{k}} \cdot t} e^{i\vec{k} \cdot \vec{x}} + \text{h.c.} \right) | N_{\Lambda} \rangle$$

$$= \sqrt{\Lambda} \left(\sqrt{N} e^{-i\sqrt{\Lambda}t} + \text{h.c.} \right)$$

$$= \sqrt{\Lambda N} \left(1 + \frac{1}{2} \Lambda t^{2} + O(\Lambda^{2} t^{4}) \right)$$

 \Rightarrow Choose

$$N = \frac{M_p^2}{\Lambda}$$

 \Rightarrow Quantum state $|N_{\Lambda}\rangle$ reproduces classical metric Φ :

$$\langle N_{\Lambda}|\hat{\Phi}|N_{\Lambda}\rangle = \Phi$$

• Representation of Φ independent of source

Application to Particle production $\bullet \circ$

Outlook 0

Decay constant

Application to Particle production $\bullet \circ$

Outlook 0

Decay constant

$$\Gamma \propto \sqrt{\Lambda} \left(1 - \frac{5}{4N} \right)$$

Application to Particle production $\bullet \circ$

Outlook 0

Decay constant

$$\Gamma \propto \sqrt{\Lambda} \left(1 - \frac{5}{4N} \right)$$

• Reinterpretation (already in the semi-classical limit $N \to \infty$): Energy transfer = graviton energy

$$E_1 + E_2 = \sqrt{\Lambda}$$

Application to Particle production ••• Outlook 0

Decay constant

$$\Gamma \propto \sqrt{\Lambda} \, \left(1 - \frac{5}{4N}\right)$$

 Reinterpretation (already in the semi-classical limit N → ∞): Energy transfer = graviton energy

$$E_1 + E_2 = \sqrt{\Lambda}$$

• Quantum correction because of back-reaction $(N' \neq N)$

The quantum state of de Sitter 000

Application to Particle production

Outlook 0

Final state of the metric

• Metric changes because of back-reaction (Inaccessible in semi-classical limit $N \to \infty$)

The quantum state of de Sitter 000

Application to Particle production

Outlook 0

Final state of the metric

- Metric changes because of back-reaction (Inaccessible in semi-classical limit $N \to \infty$)
- Initial de Sitter metric only valid as long as $N N' \ll N$ \Rightarrow Quantum break time³:

$$\Delta t pprox N\Gamma^{-1} = rac{M_p^2}{\Lambda^{1.5}}$$

³ G. Dvali and C. Gomez, *Quantum Exclusion of Positive Cosmological Constant?*, arXiv:1412.8077.

The quantum state of de Sitter 000

Application to Particle production

Outlook 0

Final state of the metric

- Metric changes because of back-reaction (Inaccessible in semi-classical limit $N \to \infty$)
- Initial de Sitter metric only valid as long as $N N' \ll N$ \Rightarrow Quantum break time³:

$$\Delta t pprox N\Gamma^{-1} = rac{M_p^2}{\Lambda^{1.5}}$$

⇒ Final state without classical metric description?

³ G. Dvali and C. Gomez, *Quantum Exclusion of Positive Cosmological Constant?*, arXiv:1412.8077.

Outlook

Summary

- De Sitter metric as classical limit of graviton state
- Particle production because of graviton decay
- 1/N-correction of the rate caused by back-reaction
- Quantum evolution of the metric

Outlook

Summary

- De Sitter metric as classical limit of graviton state
- Particle production because of graviton decay
- 1/N-correction of the rate caused by back-reaction
- Quantum evolution of the metric

Future research

- Minkowski as graviton state
- Model final de Sitter state
- Inflationary scenarios
- Other metrics such as AdS