

The CTA project

>1100 scientists from 27 countries

Thomas Schweizer

Derrer

SITE CANDIDATES

CTA Array Configuration (Cherenkov Telescope Array)

CTA is all sky observatory consisting of two stations in South and North

70 SST ~ 7KM²

25 MST + 35 SCT ~ 1KM²

4 LARGE LST

CURRENT LAYOUT PROPOSAL

Position of LSTs in La Palma

23m diameter Large Size Telescope

- MPI Munich:
 - Telescope mechanics coordination
 - Dish structure
 - Understructure
 - Rail and parts of bogie
- IFAE, Barcelona, Spain:
 - Foundation
 - Bogie assembly
- LAPP, Annecy, France
 - Arch design
 - Camera Frame
 - Drive electronics
- Ciemat, Madrid, Spain:
 - Camera Body
- Spain, several institutes
 - Trigger electronics + Data transfer
- Japan:
 - Mirrors
 - Readout electronics

Side view of the 23m diameter with access tower and foundation

Rich Science cases with LSTs

High redshift AGNs (z<2)

GRBs (z<4)

Pulsars

Binaries and transients

- LST has been optimized for the energy range between 20 200 GeV
- Low energy threshold
 - Trigger threshold: 15 GeV
 - Analysis threshold: 20 GeV
- key physics cases:
 - High-redshift AGNs and GRBs, **Expand the Gamma Ray Horizon**
 - Binaries, Pulsars and other type of transients at low energy

Rail system status

cherenkov telescope array

Test of strength of rail material with pressing wheel

cherenkov telescope array

Prototype bogie

Tests to be performed on prototype bogie

Compressive load: 90 tons Tensile load: 50 tons

Test setup in IFAE workshop

Bogie knot connection to telescope structure

Y **T**

Foundation interface

Design of central pin

12

cherenkov telescope array

Elevation drive and backside arch

Catwalks/mount access

- The main access is on the right tower.
- -There will be 9 catwalks inside the dish
- There will be a platform in the center

Catwalks/mount access cherenkov telescope array

- The main access is on the right tower.

-There wi inside t

- There w in the c

Access to the camera and design of access tower

Camera locking sequence

- During the parking procedure, the platform closes from left and right side.
- The entrance to the platform is secured by a key-locking-system

Camera access

 All access will be designed for maximal human safety

Locking systems

Arch locking at tower

Azimuth locking

LST Mirrors of 1510 mm and Dynamic AMC System (actuators and CCD Camera)

Specifications

- R: 56.0 58.4 m
 - D80(@1f) : 16.6mm (1/3 pixel)
- Weight: 47 kg

back

Mirror coating: Sputtering ($Cr+Al+SiO_2+HfO_2+SiO_2$)

Dynamical AMC System

IP68 CMOS Camera monitors the mirror direction within ±15 arcsec

Actuators control the mirror facet direction with an accuracy of ±15 arcsec

Segment of dish structure in MPI back yard: Testbed for mirror mounting, AMC control and design of catwalks and safe access

Control analysis, design and simulation for large LST telescope

- Simulation of the telescope structure in closed-loop
- Tracking, response to wind load, servo control imperfections and noise, deformation of optical elements such as M1 and Camera
- Using FEM dynamical models for design and simulation of the axes
- Using Matlab/Simulink for controller design and closed-loop simulation of axes
- Verify the dynamic responses and estimate motions of different elements of the telescope structure, e.g. M1, Camera, central axis etc.

The control diagram (using Simulink)

Full telescope simulation studies under wind excitation (wind gust up to 60 km/h)

5

Rough time line for mechanical construction

- The contract with MERO has been signed in August 2015
- The lower part of the central pin has been ordered in December 2015
- The rail has been ordered (last week)
- The bogie knots, elevation drive and backside arch will be soon in tendering process (January 2016)
- In March the pouring of the foundation will start
- In May the central pin, rail and bogies will be installed
- In July until September the lower structure and dish will be installed
- In October the camera arch and mirrors will be installed

Picture of LST by Toni

Camera support structure (CSS): LAPP

lapp

January 2014

LST-general meeting Kashiwa

- Example: Azimuth axis control
- Master/slave control of bogies (4 motors) based on a cascaded velocity and position control loops
- Average encoder reading of 4 motors is used as velocity and position feedback signals and the control command is applied similarly on all motors
- FEM model: Open-loop frequency response for controller design
- Design PI controllers for velocity and position loops with standard robustness margins
- A closed-loop bandwidth of about 1Hz

Oscillations may start at Eigenmode frequencies of the telescope, if not correctly designed

Control analysis, design and simulation for large LST telescope Tracking, response to wind load, servo control imperfections and noise,

- Tracking, response to wind load, servo control imperfections and noise, deformation of optical elements such as M1 and Camera
- Using FEM dynamical models for design and simulation of the axes
- Using Matlab/Simulink for controller design and closed-loop simulation of axes

MEDIUM-SIZED 12 M TELESCOPE OPTIMIZED FOR THE 100 GEV TO ~10 TEV RANGE

100 m² dish area16 m focal length1.2 m mirror facets

7-8° field of view ~2000 x 0.18° pixels

SMALL TELESCOPE OPTIMIZED FOR THE RANGE ABOVE 10 TEV

ASTRI Design 4.3 m mirror 9.6° foV 0.25° pixels

Multiple options under study:

Conventional single mirror, PMT camera Single mirror, silicon sensor camera Dual mirror optics, silicon & MAPMT camera

70 SSTs on Southern site

→ Tim Greenshaw Look for PeVatron in our galaxy

The ideal solution