Teilchenphysik mit höchstenergetischen Beschleunigern (Tevatron und LHC)

OCD, Structure Functions, Jets

- History of the Strong Interaction
- QCD / QED
- Proton-structure: structure functions
- hadronisation
- factorisation
 - hadron jets
- measurement of α_s
- search for new physics (BSM)

Tevatron und LHC

WS16/17 TUM S.Bethke, F. Simon

History of Strong Interactions (1)

- **1933**: $\vec{\mu} \approx 2.5 \frac{e}{2 m_p} \vec{\sigma} \Rightarrow \text{substructure of the protons}$
- **1947**: discovery of π -mesons and long-living V-particles (K⁰, Λ) in cosmic rays
- **1953**: V-particles produced at accelerators new inner quantum number ("strangeness").
- **1964**: static quark-model; new inner quantum number: colour

(p,n, ∧,...)

(π,K,...)

History of Strong Interactions (2)

- **1964**: static quark model ; new inner quantum number:Far be.
- **1969**: dynamic parton model :

- **1973**: concept of asymptotic freedom ; Quantum Chromo Dynamics.
- **1975**: 2-Jet structure in e⁺e⁻ annihilation: confirmation of quark-parton-model.
- **1979**: discovery of gluons in 3-Jet-events of e⁺ e⁻ -annihilations.

Tevatron und LHC

16/17 TUM S.Bethke, F. Simon

V7: QCD. Strukturfunktionen, Je

History of Strong Interactions (3)

1991: exp. signature of the gluon self coupling

1990-2000: confirmation of asymptotic freedom

2004: Nobel Prize (concept of A.F.) to D. Gross, H.D. Politzer und F. Wilczek

Tevatron und LHC

WS16/17 TUM S.Bethke, F. Simon

V7: QCD. Strukturfunktionen, Jets

History of Strong Interactions (4)

>2004: QCD as background in searches for New Physics (BSM)

Quarks in the proton: model and experiment

Ch. Kiesling, 6

Quarks in the proton ?

measurement of scattering angle and energy of electrons (2 given entities):

determine angle and momentum fraction x of scattering partner of electron

(2 unknowns)

Tevatron und LHC WS16/17 TUM S.Bethke, F. Simon

Quarks and gluons in the proton !

measurement of momentum fraction demonstrates complicated "linner life" of the protons:

only half of momentum is carried by quarks ; the rest is carried by "force carriers",

Je höher die Auflösung, desto mehr Gluonen "sichtbar" $Q^2 = 15$ $O^2 = 1.5$ $Q^2 = 60$ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹

the gluons

properties of QED and QCD:

-	QED	QCD
fermions	<i>leptons</i> (<i>e</i> , μ,τ)	quarks(u, d, s, c, b, t)
force couples to	electric charge	<u>3 color-charges</u>
exchange quantum	<i>photon</i> (γ) (carries no charge)	$\frac{gluons(g)}{(carry 2 color charges)} \Rightarrow g^{g}_{g}^{g$
coupling "constant"	$\alpha(Q^2=0) = \frac{1}{137}$	$\alpha_s(Q^2 = M_Z^2) \approx 0.12$
free particles	<i>leptons</i> (<i>e</i> , μ,τ)	(color neutral bound states of q and \overline{q}) <i>Hadronen</i>
theory	perturbation theory up to $O(\!lpha^5)$	perturbation theory up to $O(\alpha_s^4)$
precision achieved	10 ⁻⁶ 10 ⁻⁷	0.1% 20%

energy dependence of coupling "constants":

• verified by high precision measurements

Theoretische Beschreibung hadronischer Prozesse

- Beschreibung der einzelnen Unterprozesse :
 - f(x,Q²) : Partonendichte (q, g) im Proton [pdf]

(Wahrscheinlichkeit, daß ein parton Bruchteil x des p-Inpulses hat)

- $-\hat{\sigma}_{ij}(Q^2)$: "harter" QCD Wirkungsquerschnitt, z.B. von qq -> gg; qg -> q'g'
- parton shower: QCD Abstrahlung q->qg, g->gg, g->qq
- Hadronisation: Parametrisierung des Übergangs von q,g in Hadronen (Modelle!)
- Zerfälle: Parametrisierung nach Messungen und Spin-Statistik

Faktorisierungstheorem:

$$\sigma_{ij}=f_i(x_1,Q^2)f_j(x_2,Q^2)\widehat{\sigma}_{ij}(Q^2)$$

sowie sequentielle Anwendung der Prozesse "Parton Shower" und "Hadronisierung" .

Strukturfunktionen:

 $F_2(x,Q^2) = \sum e_q^2 x f(x,Q^2)$

QCD Störungstheorie:

Leading order (lo) Matrixelemente z.B. für 2–>2 Prozesse:

(für Präzisionsmessungen sind mind. next-to-leading order (nlo) oder sogar nnlo Rechnungen notwendig!)

-Small x

000

lee

Tevatron und LHC

proton structure (HERA + LHC)

Figure 11: Overview of the gluon, sea, u valence, and d valence PDFs before (full line) and after (dashed line) including the CMS jet data into the fit. The PDFs are shown at the starting scale $Q^2 = 1.9 \text{ GeV}^2$. In addition the total uncertainty including the CMS jet data is shown as a band around the central fit.

proton structure

Tevatron und LHC

WS16/17 TUM S.Bethke, F. Simon

kinematic regions accessible to experiments

2-Jet final state in proton-antiproton collision (Tevatron; D0 detector)

180 🔶

2-Jet final state in proton-antiproton collision (Tevatron; D0 detector)

Azimutwinkel φ , Pseudorapidität $\eta = -\tan(\vartheta/2)$, Polarwinkel ϑ , transversale Energie $E_T = E \sin \vartheta$

high-mass (9 TeV) di-jet event at LHC (13 TeV)

Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST

Tevatron und LHC

WS16/17 TUM S.Bethke, F. Simon

Event with four reconstructed hadronic jets. The four jets have a calibrated $p_T > 50$ GeV, and are found with the anti-kt algorithm with R=0.6. The highest p_T jet has a calibrated jet p_T of 144 GeV. Event collected on 10 April 2010.

Jet momenta are calibrated according to the "EM+JES" scheme. Event collected on 8 October 2010. The highest jet multiplicity event collected by the end of October 2010, counting jets with p_T greater than 60 GeV: this event has eight.

8-jet event

- 1st jet (ordered by p_T): p_T = 290 GeV, η = -0.9, ϕ = 2.7
- 2nd jet: $p_T = 220 \text{ GeV}, \eta = 0.3, \phi = -0.7$
- Missing $E_T = 21$ GeV, $\phi = -1.9$
- Sum E_T = 890 GeV

"pile-up":

- 10-40 collisions per beam crossing
- detectors and electronics must cope with huge amounts of data
- physics analyses must cope with extremely high background rates

QCD- / Jet- production cross sections

Physik der Hadronen-Jets

Zum Vergleich von Hadronen-Jets mit analytischen QCD -Rechnungen (Quark- und Gluonendynamik) muß man auflösbare Teilchenjets <u>Theorie und Praxis</u> definieren.

- Dazu benötigt man:
- Definition eines Auflösungskriteriums (z.B. minimale invariante Paarmasse, minimale Winkel, minimale Energien ..)
- Vorschrift, wie man nichtauflösbare Jets rekombiniert.

allerdings:

Es gibt keine "natürliche" Definition von Jets !

 k_{T} - Algorithmus und Jetdefinition:

(meistbenutzt in e e -Vernichtung; seit LHC auch in Hadron-Kollisionen)

niederenergetische

Infrarot-

"Jets"

Divergenzen

k_T - Algorithmus und Jetdefinition:

für jedes Objekt eines Ereignisses (Parton, Teilchen, Energie-Cluster) wird berechnet:

$$d_{ij} = \min(k_{t,i}^2, k_{t,j}^2) \frac{(\Delta R)_{ij}^2}{R^2};$$

$$d_{iB} = k_{t,i}^2$$

mit
$$(\Delta R)_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- *k*_{t,i} : transversaler Impuls bezügl. Strahlachse
- ϕ_i : azimutaler Winkel
- *y* : Rapidität; = $1/2 \ln [(E+p_z)/(E-p_z)]$

*d*_{ij}: Abstandsmass zwischen zwei Objekten i, j

*d*_{iB} : Abstandsmass zwischen Objekt und Strahlachse

eine Liste aller d_{ij} und d_{iB} wird erstellt. Falls der kleinste Eintrag d_{ij} ist, werden Objekte i und j kombiniert (Addition der 4er-Verktoren); falls d_{iB} der kleinste ist, wird Objekt i als "Jet" definiert und aus der Liste entfernt.

R : "Auflösungsparameter", bei dem Objekte i und j noch getrennt werden können.

anti-k_T - Algorithmus und Jetdefinition:

$$d_{ij} = \min(k_{t,i}^{-2}, k_{t,j}^{-2}) \frac{(\Delta R)_{ij}^2}{R^2}$$
$$d_{iB} = k_{t,i}^{-2}$$

(derzeit meist gebräuchlich am LHC, mit $R \sim 0.4 \dots 0.7$)

Anmerkungen zum k_{T} - Jetalgorithmus

- die Jetdefinition über den Auflösungsparameter $d_{ij} = 1/2 \min(E_i^2, E_j^2) (1-\cos \theta_{ij})$ ist eine Abwandlung der Formel für die invariante Paarmasse zweier masselose Teilchen: $M_{ij}^2 = E_i E_j (1-\cos \theta_{ij})$ --- die historisch vor Einführung des k_T Algorithmus verwendet wurde (unter dem Namen "JADE" Algorithmus).
- die k_T Jetdefinition ist infrarot und kollinear sicher, d.h. Berechnungen in QCD Störungstheorie sind möglich und verfügbar. Die Benutzung von d_{ij} anstelle der mehr intuitiven Paarmasse hat Vorteile bei der theoretischen Berechnung; u.a. können durch einen mathematischen Trick führende Beiträge zu höheren Ordnungen aufsummiert werden, was bei der JADE Definition nicht möglich war.
- der k_T Algorithmus hat sich besonders in der Analyse von Jets in der e+e- Vernichtung (zB bei LEP) als sehr erfolgreich erwiesen, sowohl in experimenteller wie in theoretischer Sicht.
- am Hadron Collider muss bei Adaption des k_T Algorithmus besondere Rücksicht auf die durch die weiterfliegenden Proton-Reste verursachten "remnant jets" bzw. das "underlying event" in Vorwärts-/Rückwärts-Richtung genommen werden -- geschieht über die Definition von d_{iB}

clustering performance of $k_{\rm T}$ - type Jet algorithms

Tevatron und LHC

WS16/17 TUM S.Bethke, F. Simon

Cone-Jet algorithm:

- JetClu: CDF's Run I algorithm
 - Create E_T -ordered list of calorimeter towers (seed towers: $E_T > 1$ GeV).
 - Build pre-clusters from adjacent seed towers beginning with the highest E_T tower.
 - For each pre-cluster: Calculate centroid;

iterate cone using all towers above 100 MeV $(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < R_{\text{cone}}).$

- "Ratcheting": During the iteration no seed tower of the original pre-cluster ever leaves the cone! (Pre-clusters remain connected to cones.)
- Two overlapping stable cones are merged if more than 75% of the transverse energy of one of the cones is shared by the other one.
 Otherwise the cones are split by distributing the shared energy among the cones.

(CDF-specific, iterative)

- JetClu is neither infrared safe nor collinear safe.
- Yet, JetClu is being used in CDF's Run II Level 3 trigger and for some analyses (backward compatibility).

Anmerkungen zum Cone - Jetalgorithmus

- der Cone-Algorithmus ist historisch der am längsten und meist benutzte Jetalgorithmus in der Analyse von Hadron Kollisionen (Tevatron).
- seine Definition und Anwendung ist i.w. durch experimentelle Randbedingungen (Zellgrösse hadronischer Kalorimeter) und technischer Details bestimmt; in der Vergangenheit hat daher auch jedes Experiment (zB CDF und D0 am Tevatron) leicht verschiedene Variationen des Cone-Algorithmus benutzt.
- der Cone-Algorithmus ist weder infrarot noch kollinear sicher, kann daher nicht für QCD Präzisionsstudien verwendet werden.
- wegen der langen exp. Erfahrung mit dem Cone-Algorithmus wird dieser auch weiterhin am Tevatron dominant (und zT auch am LHC) benutzt; hier besonders für technische Studien (z.B. Isolation von Leptonen, Ereignisklassifizierung, jet tagging etc).

LHC Run-1 and Run-2

LHC performance

Jet-Wirkungsquerschnitt am LHC

- Studie: Single-Jet-Spektrum nach einer Laufzeit von etwa 1 Jahr (10⁷s), bei niedriger Luminosität (L = 10³²cm⁻²s⁻¹): ∫ L dt = 1 fb⁻¹
- Messung bis 1 TeV sehr früh möglich
- Unsicherheiten:
 - Jet-Energieskala
 - Energieauflösung
 - Triggereffizienzen
 - Luminosität

Jet production cross section

Jet multiplicities

Measurement of event shapes at large momentum transfer

Eur. Phys. J. C (2012) 72: 2211

Measurement of the ratio of the inclusive 3-jet and 2-jet cross sections and first determination

of the strong coupling constant α_s in the TeV range

- measurement of $R_{32} = R_{3jet}/R_{2-jet}$ as function of $Q = p_{T1,2} = (p_{T,1}+p_{T,2})/2$
- use anti- k_T algorithm with R=0.7
- most exp. uncertainties cancel in ratio
- comparison to QCD predictions (NLO) as function of coupling strength $\alpha_s(Q)$

R₃₂ as function of p_{T1,2}

arXiv:1304.7498

summary of α_s measurements

summary of α_s measurements

at hadron colliders (ep, pp, ppbar)

WS16/17 TUM S.Bethke, F. Simon

Jet Paar-Massen und Suche nach neuen schweren Teilchen: excited Quarks

Produktion angeregter Quarks ausgeschlossen im Massen-Intervall 0.3 < m < 3 TeV (Tevatron limit: 0.8 TeV)

Zusammenfassung

- QCD (d.h. die Starke Wechselwirkung) dominiert bei weitem die Reaktionsraten an Tevatron und LHC (σ_{tot} in nebenstehender Graphik)
- QCD beschreibt die Dynamik von Quarks und Gluonen. Die Beschreibung von Hadronen ist nur durch Zuhilfenahme von Hadronisierungsmodellen möglich.
- nur durch Zuhilfenahme von Hadronisierungsmodellen möglich.
 alternativ werden Hadronenjets definiert und analysiert; Jets können theoretisch mit Quarks und ¹th Gluonen assoziiert und berechnet werden.
- neben dezidierten QCD Studien wie der Bestimmung von α_s ist die genaue Kenntnis der QCD Prozesse unabdingbar für das Finden und die Vermessung neuer physikalischer Effekte am LHC (e.g. Higgs, SUSY, large extra dimensions).

Literaturempfehlungen

- Ellis, Stirling, Webber: "QCD and Collider Physics", Cambridge Monographs,
- A QCD primer, G. Altarelli, CERN School 2001, https://cdsweb.cern.ch/record/619179/files/p65.pdf
- Quantum Chromodynamics, M.H.Seymour, 2004 European School of High-Energy Physics, hep-ph/0505192
- Measurement of inclusive jet and dijet cross sections ..., ATLAS Collaboration, arXiv:1009.5908v2, <u>Eur.Phys.J. C71 (2011) 1512</u>
- Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section ...; CMS collab., arXiv:1304.7498, <u>Eur.Phys.J. C73 (2013) 2604</u>

nächste Vorlesungen:

- 12.12.2016: Standard Modell Tests
- 19.12.2016: Top Quark Physik
- 09.01.2017 Higgs Physik I