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Overview

• The Standard Model - Structure, Motivation


• Vector boson properties

• Z decay & width


• W, Z production


• W mass


• W width


• Triple Gauge couplings


• Topics of future lectures in the framework of the Standard Model:

• QCD (Lecture 8)


• Higgs (Lectures 9 & 10)


• Top quark (Lecture 12)
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The Standard Model of Particle Physics
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• The SM describes our visible Universe by a (reasonably small) set of particles:
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Underlying theories: QCD QED / weak interaction

➫ electroweak unification (GSW)

… plus the Higgs particle as a consequence of the mechanism to generate mass
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The Success of the Standard Model

• The Standard Model was developed in the 1970s following experimental 
observations (at that point only three quarks were known, the charm discovery 
followed shortly thereafter)

4



Frank Simon (fsimon@mpp.mpg.de)Teilchenphysik mit höchstenergetischen Beschleunigern: 
WS 16/17, 08: Standard Model

The Success of the Standard Model

• The Standard Model was developed in the 1970s following experimental 
observations (at that point only three quarks were known, the charm discovery 
followed shortly thereafter)
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• It:

• describes the unified electroweak interactions and the strong force with gauge 

invariant quantum field theories


• is extremely successful in consistently and precisely describing all particle reaction 
observed to date


• provides a consistent (yet incomplete) picture of the evolution of the early universe 
-> particle cosmology
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The Standard Model - Combining Theories
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BUILDING	AN	UNDERSTANDING	OF	THE	UNIVERSE:
A	WORK	A	CENTURY	IN	THE	MAKING

These are among the highest intellectual achievements in the history of
our species, they will be part of our legacy to future generations for eternity

The potential now exists to revolutionize our knowledge again.

ICHEP	2016	-- I.	Shipsey
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BUILDING	AN	UNDERSTANDING	OF	THE	UNIVERSE:
A	WORK	A	CENTURY	IN	THE	MAKING

These are among the highest intellectual achievements in the history of
our species, they will be part of our legacy to future generations for eternity

The potential now exists to revolutionize our knowledge again.

ICHEP	2016	-- I.	Shipsey
The Standard Model of Particle Physics
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“Rediscovering” The Standard Model at LHC
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“Rediscovering” The Standard Model at LHC
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The Structure of the Electroweak Standard Model

• The electroweak part of the SM is based on the gauge group 
SU(2) x U(1)

8
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• This gives rise to the gauge bosons W+, W-, Z for SU(2) and γ for U(1)
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• This gives rise to the gauge bosons W+, W-, Z for SU(2) and γ for U(1)

• Left-handed fermion fields transform as doublets under SU(2) - right handed  
fermions as singlets (no coupling of right-handed fermions to W; V-A 
structure of the weak interaction)
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• This gives rise to the gauge bosons W+, W-, Z for SU(2) and γ for U(1)

• Left-handed fermion fields transform as doublets under SU(2) - right handed  
fermions as singlets (no coupling of right-handed fermions to W; V-A 
structure of the weak interaction)

• There are three fermion families

• A complex scalar Higgs field is added for mass generation through 
spontaneous symmetry breaking to give mass to the gauge bosons and 
fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson
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The Structure of the Electroweak Standard Model

• The electroweak part of the SM is based on the gauge group 
SU(2) x U(1)

8

• This gives rise to the gauge bosons W+, W-, Z for SU(2) and γ for U(1)

• Left-handed fermion fields transform as doublets under SU(2) - right handed  
fermions as singlets (no coupling of right-handed fermions to W; V-A 
structure of the weak interaction)

• There are three fermion families

• A complex scalar Higgs field is added for mass generation through 
spontaneous symmetry breaking to give mass to the gauge bosons and 
fermions -> Gives rise to one physical neutral scalar particle, the Higgs boson

• The electroweak SM describes in lowest order (“Born approximation) 
processes such as f1f2 -> f3f4 with only 3 free parameters: α, Gf, sin2θW
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Testing the Standard Model

9

• mainly physics with


• electroweak gauge bosons (W, Z, γ)


• top quarks (-> lecture 9)


• with hadron jets (QCD) (-> lecture 7)
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Testing the Standard Model
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• mainly physics with


• electroweak gauge bosons (W, Z, γ)


• top quarks (-> lecture 9)


• with hadron jets (QCD) (-> lecture 7)

• measurements of 


• production cross sections


• masses


• decay rates / widths


• decay asymmetries


• gauge bosons couplings (WW, Wγ, WZ, ZZ, Zγ)
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• Since the establishment of the Standard Model, one main goal of particle 
physics has been (and still is) to test its predictions as a consistency check, 
and to look for cracks
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• Since the establishment of the Standard Model, one main goal of particle 
physics has been (and still is) to test its predictions as a consistency check, 
and to look for cracks

• Search for deviations from the SM:

• properties, production and decay of gauge bosons are sensitive to the 

particle content and to various particle properties, and are modified by new 
physics 

➫ used to place indirect limits on the Higgs mass based on Mtop and MW 
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Motivations for these Tests

10

• Since the establishment of the Standard Model, one main goal of particle 
physics has been (and still is) to test its predictions as a consistency check, 
and to look for cracks

• Use well-understood SM processes to measure luminosity at LHC


• Precisely define SM backgrounds in the search for new physics

• Search for deviations from the SM:

• properties, production and decay of gauge bosons are sensitive to the 

particle content and to various particle properties, and are modified by new 
physics 

➫ used to place indirect limits on the Higgs mass based on Mtop and MW 
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The Z Boson in e+e- Annihilation

• A short excursion to e+e- Annihilation (covered in somewhat greater detail in 
the Summer)

11

Measurements at LEP (and 
lower-energy e+e- colliders):


Cross-section shows 
electroweak interactions: 
combination of γ and Z 
exchange - at high energy Z 
dominates
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The Width of the Z Boson

• A key measurement at the Z 
resonance: The total decay width

12
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Given by: 
ΓZ = Γee + Γμμ + Γττ + Γhad  

         + Γνeνe + Γνμνμ + Γντντ


        = 3 Γll + Γhad + Nν Γνν 
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         + Γνeνe + Γνμνμ + Γντντ


        = 3 Γll + Γhad + Nν Γνν 
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can be directly measured

MZ = 91.1875 ± 0.0021 GeV
ΓZ = 2.4952 ± 0.0023 GeV

This precision can not be reached at hadron  
colliders - LEP input used for calibration at LHC
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The Width of the Z Boson

• A key measurement at the Z 
resonance: The total decay width

12

Given by: 
ΓZ = Γee + Γμμ + Γττ + Γhad  

         + Γνeνe + Γνμνμ + Γντντ


        = 3 Γll + Γhad + Nν Γνν 

The partial width into visible final states 
can be directly measured

The SM makes a clean prediction for Γνν  
- from the measured cross section and 
total width the number of (light) 
neutrinos can be determined

Nν = 2.984 ± 0.008 

MZ = 91.1875 ± 0.0021 GeV
ΓZ = 2.4952 ± 0.0023 GeV

This precision can not be reached at hadron  
colliders - LEP input used for calibration at LHC
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Production (and Decay) of Gauge Bosons at LHC

• For precision measurements: hadronic final states can 
not be used due to dominating QCD background

13
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… but also t/u channel processes such as
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Production (and Decay) of Gauge Bosons at LHC

• For precision measurements: hadronic final states can 
not be used due to dominating QCD background

13

• theoretical uncertainties mainly due to quark structure of the proton: 
PDF uncertainties

… but also t/u channel processes such as
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Z Production at LHC

• Candidate Z->e+e-

14
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Z Production at LHC
• Candidate Z->µ+µ-

15
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W Production at LHC

• W- -> µ-ν candidate

16
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W Production at LHC

• W+ -> e+ν candidate
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Z Production at LHC with high Pileup

• Z-> µµ 
… with 20 additional 
vertices

18
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Gauge Boson Production: Cross Sections
• Measurement of Cross Sections:

19

G. Weiglein et al. 
Physics Reports 426 (2006) 47–358
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• Z selection:


• one lepton with “tight” selection (high 
energy, isolation, unambiguous ID)


• second lepton with more relaxed criteria
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• W selection:


• one lepton with “tight” selection


• missing transverse energy / momentum
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Gauge Boson Production: Cross Sections
• Measurement of Cross Sections:

19

G. Weiglein et al. 
Physics Reports 426 (2006) 47–358

• Z selection:


• one lepton with “tight” selection (high 
energy, isolation, unambiguous ID)


• second lepton with more relaxed criteria

• W selection:


• one lepton with “tight” selection


• missing transverse energy / momentum

• Determination of cross section - 
corrections to event numbers:


• trigger efficiency (data)


• reconstruction efficiency (MC, data)


• luminosity

€ 

σ Z =
N

Ldt∫ ⋅Br(Z0 → e+e− ) ⋅εee



theoretical uncertainties, which are dominated by the PDF
uncertainties.
The luminosity of the data sample is measured with an

uncertainty of 2.6% by counting the number of clusters per
event in the silicon pixel detector. The highly granular
detector, consisting of ∼60 million channels, guarantees an
excellent linearity of the pixel detector response versus
pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters [41]. The
dominant contribution to the luminosity uncertainty orig-
inates from the assumptions on the functional form of the
beam shapes.
The theoretical predictions of cross sections and cross

section ratios are computed at NNLO with the program
FEWZ [42] and the MSTW2008 [43] set of PDFs. The
uncertainties in these predictions, at the 68% confidence
level (CL ), include contributions from the uncertainty of
the strong coupling constant αs [44,45], the choice of
heavy-quark masses (charm and bottom quarks) [46], as
well as neglected higher-order corrections beyond NNLO,
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FIG. 1 (color online). The missing transverse energy distribu-
tions forW boson candidate events in the electron (top) and muon
(bottom) final states. The variable χ shown in the lower plot is
defined as ðNobs − NexpÞ=

ffiffiffiffiffiffiffiffiffi
Nobs

p
, where Nobs is the number of

observed events and Nexp is the total of the fitted signal and
background yields.
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FIG. 2 (color online). The dilepton mass distributions for Z
boson candidate events in the electron (top) and muon (bottom)
final states. The variable χ shown in the lower plot is defined as
ðNobs − NexpÞ=

ffiffiffiffiffiffiffiffiffi
Nobs

p
, where Nobs is the number of observed

events and Nexp is the total of the signal and background yields.

PRL 112, 191802 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
16 MAY 2014
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Vector Boson Reconstruction - LHC

20
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the strong coupling constant αs [44,45], the choice of
heavy-quark masses (charm and bottom quarks) [46], as
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theoretical uncertainties, which are dominated by the PDF
uncertainties.
The luminosity of the data sample is measured with an

uncertainty of 2.6% by counting the number of clusters per
event in the silicon pixel detector. The highly granular
detector, consisting of ∼60 million channels, guarantees an
excellent linearity of the pixel detector response versus
pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters [41]. The
dominant contribution to the luminosity uncertainty orig-
inates from the assumptions on the functional form of the
beam shapes.
The theoretical predictions of cross sections and cross

section ratios are computed at NNLO with the program
FEWZ [42] and the MSTW2008 [43] set of PDFs. The
uncertainties in these predictions, at the 68% confidence
level (CL ), include contributions from the uncertainty of
the strong coupling constant αs [44,45], the choice of
heavy-quark masses (charm and bottom quarks) [46], as
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detector, consisting of ∼60 million channels, guarantees an
excellent linearity of the pixel detector response versus
pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters [41]. The
dominant contribution to the luminosity uncertainty orig-
inates from the assumptions on the functional form of the
beam shapes.
The theoretical predictions of cross sections and cross

section ratios are computed at NNLO with the program
FEWZ [42] and the MSTW2008 [43] set of PDFs. The
uncertainties in these predictions, at the 68% confidence
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detector, consisting of ∼60 million channels, guarantees an
excellent linearity of the pixel detector response versus
pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters [41]. The
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inates from the assumptions on the functional form of the
beam shapes.
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detector, consisting of ∼60 million channels, guarantees an
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pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
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dominant contribution to the luminosity uncertainty orig-
inates from the assumptions on the functional form of the
beam shapes.
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theoretical uncertainties, which are dominated by the PDF
uncertainties.
The luminosity of the data sample is measured with an

uncertainty of 2.6% by counting the number of clusters per
event in the silicon pixel detector. The highly granular
detector, consisting of ∼60 million channels, guarantees an
excellent linearity of the pixel detector response versus
pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters [41]. The
dominant contribution to the luminosity uncertainty orig-
inates from the assumptions on the functional form of the
beam shapes.
The theoretical predictions of cross sections and cross

section ratios are computed at NNLO with the program
FEWZ [42] and the MSTW2008 [43] set of PDFs. The
uncertainties in these predictions, at the 68% confidence
level (CL ), include contributions from the uncertainty of
the strong coupling constant αs [44,45], the choice of
heavy-quark masses (charm and bottom quarks) [46], as
well as neglected higher-order corrections beyond NNLO,
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Vector Boson Reconstruction - LHC

• “Best results” typically in the Muon channel
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detector, consisting of ∼60 million channels, guarantees an
excellent linearity of the pixel detector response versus
pileup. The method is calibrated by means of a procedure
pioneered by van der Meer [40], consisting of beam scans
along the vertical and horizontal directions. This van der
Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters [41]. The
dominant contribution to the luminosity uncertainty orig-
inates from the assumptions on the functional form of the
beam shapes.
The theoretical predictions of cross sections and cross

section ratios are computed at NNLO with the program
FEWZ [42] and the MSTW2008 [43] set of PDFs. The
uncertainties in these predictions, at the 68% confidence
level (CL ), include contributions from the uncertainty of
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heavy-quark masses (charm and bottom quarks) [46], as
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W and Z Production at the Tevatron

• Ratio of production of W and Z 
bosons R - very well predicted, 
since some of the PDF 
uncertainties cancel
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extract the ratio of coupling constants Gτ/Ge = 0.99 ± 0.04 (stat.) ±0.07 (syst.).
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Figure 2: Left: invariant mass distribution of electron-positron pairs collected by CDF. Right: invariant mass
distribution of µ+µ− pairs collected by D0.

2.2 Z Cross Section Measurements

To select Z → ee candidates, CDF requires two central electrons with opposite charge, ET > 25
GeV, and PT > 10 GeV/c; they must have invariant mass in the 66 < Mee < 116 GeV/c2

range. 1830 evts are thus collected (see Fig. 2, left), with 10 ± 5 estimated from background
sources. The total acceptance is Aee = 11.49 ± 0.07 (stat.) ±0.64 (syst.)%, where systematic
errors are mostly due to PDF and modeling of tracker material. The cross section is measured
at σZB(Z → ee) = 267.0 ± 6.3 (stat.) ±15.2 (syst.) ±16.0 (lum.)pb, higher but consistent with

the NNLO calculation 2 of 250.5 ± 3.8 pb.
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Figure 3: Left: comparison of cross section measurements for W and Z bosons with NNLO calculations (full
lines). Right: comparison of the new CDF result on the W boson width with previous determinations.

Both CDF and D0 have updated their measurement of σZB(Z → µµ). From 1632 events
containing two muon candidates with PT > 20 GeV/c, CDF measures σZB(µµ) = 246 ± 6

R ~ 10
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W and Z Measurements at the LHC

• Measured cross sections corrected for efficiency and acceptance


• Higher cross section for W+ than for W-: Due to valence quark content of 
protons: uud - higher probability to make a W+ 
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to the inclusive cross sections, we present ratios of cross
sections measured with a precision of 2%. The measure-
ments in the electron and muon channels are consistent
and in agreement with NNLO calculations. Additional
figures summarizing our measurements are available in
the Supplemental Material [33].
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FIG. 3 (color online). Measured and predicted W versus Z boson (left column) and Wþ versus W− boson (right column) production
cross sections times branching fractions. The ellipses illustrate the 68% CL coverage for total uncertainties (open) and excluding the
luminosity uncertainty (filled). The top row shows the inclusive cross sections times branching fractions and the bottom row shows the
results within the fiducial regions. The uncertainties in the theoretical predictions correspond to the PDF uncertainty components only
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W and Z Production at the LHC

• Combined with Tevatron results to illustrate evolution with energy

23

Center-of-mass energy [TeV]

 B
 [p

b]
× 

σ

210

310

410

 (13 TeV)-1CMS Preliminary, 43 pb

 (8 TeV)-1CMS, 18 pb

 (7 TeV)-1CMS, 36 pb

CDF Run II

D0 Run I

UA2

UA1

Theory: NNLO, FEWZ and NNPDF 3.0 PDFs

pp

pp

0.5 1 2 5 7 10 20

W
+W-W

Z



Frank Simon (fsimon@mpp.mpg.de)Teilchenphysik mit höchstenergetischen Beschleunigern: 
WS 16/17, 08: Standard Model

Measuring the Mass of the W Boson

• Reconstruct transverse mass:

24

• Measurement of the mass from the transverse momentum distribution of the 
lepton and of the neutrino (inferred from lepton and hadronic system)
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Measuring the Mass of the W Boson

• Reconstruct transverse mass:

24

• Measurement of the mass from the transverse momentum distribution of the 
lepton and of the neutrino (inferred from lepton and hadronic system)

MT =
q
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• Requires excellent understanding of momentum 
and energy scale and resolution

• Compare measured MT distribution to simulated 
distributions with different W mass assumptions 
(“template fit”)
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Measuring the Mass of the W Boson

• Best measurement from Tevatron


• Combination of CDF and D0: MW = 80.387 ± 0.016 GeV


• World average with LEP: MW = 80.385 ± 0.015 GeV

25

80200 80400 80600

Mass of the W Boson

 [MeV]WM March 2012

Measurement  [MeV]WM

CDF-0/I  79±80432 

-I∅D  83±80478 

CDF-II )-1(2.2 fb  19±80387 

-II∅D )-1(1.0 fb  43±80402 

-II∅D )-1 (4.3 fb  26±80369 

Tevatron Run-0/I/II  16±80387 

LEP-2  33±80376 
World Average  15±80385 
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The Impact of the W Mass Measurement

• W mass measurement 
(together with top mass) 
provides indirect constraints 
on Higgs mass in the 
Standard Model 

26
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Future prospects for mW  

� Use global fits of EW sector of the SM to compare measured and predicted masses 
� Incredible compatibility! mW, mt, mH 

 
 
 
 
 
 
 
 
 
 
 
 
  

� Even with precision of GmW = 15MeV,  
indirect determination of mW better by factor of ~2  

Calls for better measurements 
� Projected final Tevatron precision: GmW ~ 9MeV? 
� Can LHC do better? A real challenge! 

� Higher pileup environment 
� Momentum scale, recoil model, PDF  

� will need to be well known 14 

http://project-gfitter.web.cern.ch/project-gfitter/ 

arXiv:1407.3792 

Targets for LHC 
arXiv:1310.6708 

Note on theo uncertainties on mass:  
ATL-PHYS-PUB-2014-015 
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� Even with precision of GmW = 15MeV,  
indirect determination of mW better by factor of ~2  

Calls for better measurements 
� Projected final Tevatron precision: GmW ~ 9MeV? 
� Can LHC do better? A real challenge! 

� Higher pileup environment 
� Momentum scale, recoil model, PDF  

� will need to be well known 14 

http://project-gfitter.web.cern.ch/project-gfitter/ 

arXiv:1407.3792 

Targets for LHC 
arXiv:1310.6708 

Note on theo uncertainties on mass:  
ATL-PHYS-PUB-2014-015 

First LHC W mass measurement from ATLAS to be announced tomorrow!
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Measuring the Width of the W Boson

• The tail of the MT distribution is sensitive to the total width of the W boson:

• Events with MT > MW are due to detector resolution effects and due to the finite 

width - the resolution contribution to this falls faster than the width contribution, 
allowing an accurate measurement of the width

27

7

TABLE I: The sources of uncertainty (in MeV) on ΓW for the
W → eν and W → µν measurements. If there is a correlated
source of error between the two measurements its contribution
to each measurement is listed in the third column, labeled C.

Source ∆Γeν
W ∆Γµν

W C
Statistics 60 67
Lepton E or p scale 21 17 12
Lepton E or p resolution 31 26
Electron energy loss simulation 13
Recoil model 54 49
pW

T 7 7 7
Backgrounds 32 33
PDFs 20 20 20
MW 9 9 9
EW radiative corrections 10 6 6
Lepton ID/acceptance 10 7
Total Syst. 79 71 27
Total (Stat. + Syst.) 99 98 27
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FIG. 1: The transverse mass distributions of the W → eν
data (a) and W → µν data (b) compared to the best fit.
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The Width of the W - Summary of Results

• Excellent agreement 
with the Standard 
Model
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Run-I Run-II

CDF-Ia CDF-Ib D0-Ib CDF D0

CDF-Ia 1.00 0.02 0.02 0.03 0.03

CDF-Ib 1.00 0.03 0.04 0.04

D0-I 1.00 0.07 0.07

CDF-II 1.00 0.09

D0-II 1.00

Table 4: Matrix of global correlation coefficients among the 5 measurements
of Table 2.

1600 2000 2400

Width of the W Boson

 [MeV]WΓ February  2010

Measurement  [MeV]WΓ

 / dof = 1.4 / 42χ

SM
* (Preliminary)

CDF-Ia  329±2,032 

CDF-Ib  138±2,043 

-I∅D  172±2,242 

CDF-II  72±2,033 

-II∅D  72±2,034 

Tevatron Run-I/II  49±2,046 

LEP-2*  83±2,196 

 42±World Av.* = 2,085 

Figure 1: Comparison of measurements of the width of the W -boson and
their average. The most recent preliminary result from LEP-2 [20] and the
Standard Model prediction are also shown. The Tevatron values are corrected
for small inconsistencies in theoretical assumptions among the original pub-
lications .
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Triple Gauge Couplings

• In the SM: Space-like diagrams are = 0 if two of the three bosons are identical

29

γ, Z -> W+W- 
W -> WZ, Wγ

γ, Z -> ZZ

• SM: Time-like diagrams with two identical 
bosons in the final state are allowed


• NB - No triple gauge coupling! SM 
background to TGC measurements

• BSM: May contribute to triple Gauge couplings in non-standard ways
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Measurement of WW Production

• Looking for W->lν: 
Best separation from 
background


• Cleanest signal: 
events w/o jets - one 
additional jet also 
considered
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The distributions of the leading lepton pT (p`T, max), the pT of the dilepton system (p``T ), the dilep-
ton invariant mass (m``) and the azimuthal angle between the two leptons (Df``) are shown in
Figs. 1 and 2 for the zero-jet and one-jet categories.
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Figure 1: The data and MC distributions for the zero-jet category of the leading lepton pT
(p`T, max), the pT of the dilepton system (p``T ), the dilepton invariant mass (m``) and the azimuthal
angle between the two leptons (Df``). The hatched areas represent the total systematic uncer-
tainty in each bin. The error bars in the ratio plots are calculated considering the statistical
uncertainty from the data sample and the systematic uncertainties in the background estima-
tion and signal efficiencies. The last bin includes the overflow.

The W+W� production cross section in pp collision data at
p

s = 8 TeV is measured in the
individual channels as shown in Table 5.

The experimental and theoretical uncertainties in the event selection as well as the uncertainty
on the integrated luminosity are reported separately. The theoretical component includes con-
tributions from the jet counting theory model and PDFs as in Table 2. The combined result
is:

sW+W� = 60.1 ± 0.9 (stat) ± 3.2 (exp) ± 3.1 (theo) ± 1.6 (lumi) pb = 60.1 ± 4.8 pb. (2)

The measurement in the different flavor final state is consistent with that in the same flavor
final state at the level of 1.5s after taking into account the statistical uncertainty and the uncor-

12 7 The W+W�
cross section measurement
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Figure 2: The data and MC distributions for the one-jet category of the leading lepton pT
(p`T, max), the pT of the dilepton system (p``T ), the dilepton invariant mass (m``) and the azimuthal
angle between the two leptons (Df``). The hatched areas represent the total systematic uncer-
tainty in each bin. The error bars in the ratio plots are calculated considering the statistical
uncertainty from the data sample and the systematic uncertainties in the background estima-
tion and signal efficiency. The last bin includes the overflow.

Table 5: The W+W� production cross section in each of the four event categories.

Event category W+W� production cross section (pb)

zero-jet category Different-flavor 59.7 ± 1.1 (stat) ± 3.3 (exp) ± 3.5 (theo) ± 1.6 (lumi)
Same-flavor 64.3 ± 2.1 (stat) ± 4.6 (exp) ± 4.3 (theo) ± 1.7 (lumi)

one-jet category Different-flavor 59.1 ± 2.8 (stat) ± 6.0 (exp) ± 6.2 (theo) ± 1.6 (lumi)
Same-flavor 65.1 ± 5.5 (stat) ± 8.3 (exp) ± 8.0 (theo) ± 1.7 (lumi)
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Measurement of ZZ Production
• One Z going into neutrinos: 20% of the total 

decays -> large missing energy


• One Z going to leptons (e, µ): 6.7%: Clean 
final state, can be identified above 
background
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Fig. 1 Reduced Emiss
T spectrum in the inclusive ll (l = e, µ) channel

at 7 TeV (top) and 8 TeV (bottom), using the photon model to describe
the DY contribution and NRB modeling for WW, W + jets, and top-
quark production, after selections on the dilepton invariant mass and
pT, jet veto, b-tagged jet veto, third lepton veto, and !φ(pmiss

T , jet),
as described in Sect. 4. The gray error band represents the statistical
uncertainty in the predicted yields

using mcfm version 6.2 [3], and using PDFs from the Les
Houches accord PDF (lhapdf) program, version 5.8.7 [30].
The PDF + αS uncertainty in the WZ cross section is evalu-
ated as the maximum spread of the cross sections computed

at µR = µF = mZ with three PDF sets, including the corre-
sponding uncertainties from one standard deviation variation
of the PDF parameters and the αS value [31]. It is found to
be 3.1 % (4.2 %) at 7 (8) TeV.

The uncertainty from the renormalization and factoriza-
tion scales is evaluated as the maximum difference between
the central value of the cross section at µR = µF = mZ and
the central values computed at µR = µF = mZ/2 and 2mZ,
using each of the three PDFs recommended in Ref. [31].
An uncertainty of 5.9 % (5.4 %) at 7 (8) TeV is found for
the WZ background. For the ZZ signal, we evaluate this
theoretical uncertainty in the case of the exclusive produc-
tion with 0 jets, to take into account the jet-veto applied in
the signal selection, following the prescription described in
Refs. [32,33]. The exclusive cross section for ZZ + 0 jets is
σ0 j = σ≥0 j −σ≥1 j , where σ≥nj is the inclusive cross section
of ZZ + at least n jets, where n = 0, 1. According to Ref.
[32], σ≥0 j and σ≥1 j are essentially uncorrelated, thus the

uncertainty in σ0 j can be computed as ϵ0 j =
√

ϵ2
≥0 j + ϵ2

≥1 j ,
where ϵ≥0 j and ϵ≥1 j are the uncertainties in σ≥0 j and σ≥1 j ,
respectively. The cross sections are computed with mcfm,
including the acceptance requirements on lepton pT and η,
charged dilepton mass, and Emiss

T , as well as the jet veto,
when relevant. The cross section uncertainties are estimated
by varying the renormalization and factorization scales, as
explained above. Since the charged dilepton pT spectrum
is the observable from which limits on ATGCs are derived,
the uncertainty in σ0 j is computed in different intervals of
charged dilepton pT.

The uncertainty in the NLO EW correction to ZZ pro-
duction, corresponding to missing higher-order terms in the
computation, is estimated as the product of the NLO QCD
and EW corrections [7]. The uncertainty in the EW correction
to WZ production is estimated as 100 % of the correction,
to account for the poorly known fraction of photon + quark-
induced events [8] passing the jet veto.

6.3 Acceptance

The kinematic acceptance for the signal is computed using
mcfm. Kinematic requirements, based on those used in the
signal selection, are applied to the charged leptons and neu-
trinos at the generator level. The acceptance is determined
by comparing the cross sections with and without the kine-
matic requirements. The systematic uncertainty is evaluated
as the variation in the acceptance resulting from varying the
renormalization and factorization scales from mZ to mZ/2
and 2mZ, summed in quadrature with the variation obtained
from using different PDF sets and from varying the PDF
parameters and the αS value by one standard deviation. The
result is 2.8 % at both 7 and 8 TeV.
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6.4 Luminosity

The uncertainty in the luminosity measurement is 2.2 % in
2011, and 2.6 % in 2012 [34].

6.5 Lepton trigger and identification efficiency

Lepton trigger and identification efficiencies are determined
from data, using the tag-and-probe technique with Z → ll
events [35], and used to correct the simulated samples. The
total uncertainty in the lepton efficiency amounts to about
3 % for ee events, and 4 % for µµ events.

6.6 Lepton momentum scale

The systematic uncertainty in the lepton momentum scale
is computed by shifting the nominal momenta by ±1σ

and propagating the variations to the reduced Emiss
T . We

assume an uncertainty of 2 % (3.5 %) in the energy of
electrons reconstructed in the ECAL barrel (endcap), and
1 % in the muon momentum. The resulting variations of
the final yields are 2.5 % for the ee channel, and 1.0 %
for the µµ channel and they are treated as a shape uncer-
tainty.

6.7 Jet energy scale and resolution

The uncertainty in the calibration of the jet energy scale
directly affects the jet veto, the calculation of reduced Emiss

T ,
and the selection of the balance variable. The JES uncer-
tainty is estimated by shifting the jet energies by ±1σ and
propagating the variations to the reduced Emiss

T and all the
other relevant observables. Uncertainties in the final yields
of 3–4 (7–8) % are found for both the ee and µµ final states
at 7 (8) TeV.

Similarly, a systematic uncertainty in jet energy resolu-
tion (JER) is computed. As explained above, the energy
of jets in simulation is corrected to reproduce the resolu-
tion observed in data. Such corrections are varied accord-
ing to their uncertainties and these variations are propa-
gated to all the observables and selections dependent on jet
energy. An uncertainty in the final yields of less than 1 %
is found in both ee and µµ final states: 0.4 % (0.8 %) at
7 (8) TeV.

Since the shapes of the distributions are expected to be
affected by variations in the JES and the JER, these sources
are treated as shape uncertainties in the extraction of the cross
section.

6.8 b-jet veto

The b-tagging efficiency is taken from Ref. [36]. In simula-
tion, the nominal working point for this b-tagger is shifted to
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Fig. 2 Reduced Emiss
T distribution in ll (l = e, µ) channels, after the

full selection, at 7 TeV (top) and 8 TeV (bottom). The DY and WW,
W + jets, and top backgrounds are estimated with data-driven methods.
The gray error band includes statistical and systematic uncertainties in
the predicted yields. In the bottom plots, vertical error bars and bands
are relative to the total predicted yields. In all plots, horizontal error
bars indicate the bin width

reproduce the efficiency observed in data. The uncertainty in
the measured efficiency is propagated to the event yields of
the processes estimated from simulation by applying further
shifts to the discriminator threshold. A very small uncertainty
in the final yields of the MC samples is found: 0.1–0.15 % at
both 7 and 8 TeV.
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Measurement of ZZ Production
• Clean measurement when both Zs going to 

leptons - but small rate (6.7%)2 = 0.45%
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first Z 
(better mass)

254 CMS Collaboration / Physics Letters B 740 (2015) 250–272

Fig. 2. (upper left) Distribution of the reconstructed four-lepton mass for the sum of the 4e, 4µ, and 2e2µ decay channels. (upper right) Reconstructed Z1 mass. The 
correlation between the reconstructed Z1 and Z2 masses for the (lower left) combined 4e, 4µ, and 2e2µ final states and (lower right) for ℓℓττ final states. Points represent 
the data, the shaded histograms labeled ZZ represent the powheg+gg2zz+pythia predictions for ZZ signal, the histograms labeled WZ/Z + jets show background, which is 
estimated from data, as described in the text.

fication and isolation are 1–2% for muons and electrons, and 6–7% 
for τh. The uncertainty in the LHC integrated luminosity of the data 
sample is 2.6% [30].

Theoretical uncertainties in the ZZ → ℓℓℓ′′ℓ′′ acceptance are 
evaluated using mcfm and by varying the renormalization and fac-
torization scales, up and down, by a factor of two with respect to 
the default values µR = µF = mZ. The variations in the acceptance 
are 0.1% (NLO qq → ZZ) and 0.4% (gg → ZZ), and can be neglected. 
Uncertainties related to the choice of the PDF and the strong cou-
pling constant αs are evaluated following the PDF4LHC [31] pre-
scription and using CT10, MSTW08, and NNPDF [32] PDF sets and 
found to be 4% (NLO qq → ZZ) and 5% (gg → ZZ).

The uncertainties in Z + jets, WZ + jets, and tt yields reflect the 
uncertainties in the measured values of the misidentification rates 
and the limited statistics of the control regions in the data, and 
vary between 20% and 70%.

The uncertainty in the unfolding procedure discussed in Sec-
tion 7 arises from differences between sherpa and powheg for the 
unfolding factors (2–3%), from scale and PDF uncertainties (4–5%), 
and from experimental uncertainties (4–5%).

7. The ZZ cross section measurement

The measured and expected event yields for all decay channels 
are summarized in Table 1. The recently discovered Higgs parti-
cle with the mass of 125 GeV does not contribute to this analysis 
as background because of the phase space selection requirements. 

The reconstructed four-lepton invariant mass distributions for the 
4e, 4µ, 2e2µ, and combined ℓℓττ decay channels are shown in 
Fig. 1. The shape of the background is taken from data. The recon-
structed four-lepton invariant mass distribution for the combined 
4e, 4µ, and 2e2µ channels is shown in Fig. 2 (upper left). Fig. 2
(upper right) presents the invariant mass of the Z1 candidates. 
Figs. 2 (lower left) and (lower right) show the correlation between 
the reconstructed Z1 and Z2 masses for (lower left) 4e, 4µ, and 
2e2µ and for (lower right) ℓℓττ final states. The data are well 
reproduced by the signal simulation and with background predic-
tions estimated from data.

The measured yields are used to evaluate the total ZZ produc-
tion cross section. The signal acceptance is evaluated from sim-
ulation and corrected for each individual lepton flavor in bins of 
pT and η using factors obtained with the “tag-and-probe” tech-
nique. The requirements on pT and η for the particles in the 
final state reduce the full possible phase space of the ZZ → 4ℓ
measurement by a factor within a range of 0.56–0.59 for the 4e, 
4µ, and 2e2µ, depending on the final state, and by a factor of 
0.18–0.21 for the ℓℓττ final states, with respect to all events gen-
erated in the mass window 60 < mZ1 , mZ2 < 120 GeV. The branch-
ing fraction for Z → ℓ′ℓ′ is (3.3658 ± 0.0023)% for each lepton 
flavor [33].

To include all final states in the cross section calculation, a si-
multaneous fit to the number of observed events in all decay 
channels is performed. The likelihood is written as a combination 
of individual channel likelihoods for the signal and background 

254 CMS Collaboration / Physics Letters B 740 (2015) 250–272

Fig. 2. (upper left) Distribution of the reconstructed four-lepton mass for the sum of the 4e, 4µ, and 2e2µ decay channels. (upper right) Reconstructed Z1 mass. The 
correlation between the reconstructed Z1 and Z2 masses for the (lower left) combined 4e, 4µ, and 2e2µ final states and (lower right) for ℓℓττ final states. Points represent 
the data, the shaded histograms labeled ZZ represent the powheg+gg2zz+pythia predictions for ZZ signal, the histograms labeled WZ/Z + jets show background, which is 
estimated from data, as described in the text.

fication and isolation are 1–2% for muons and electrons, and 6–7% 
for τh. The uncertainty in the LHC integrated luminosity of the data 
sample is 2.6% [30].

Theoretical uncertainties in the ZZ → ℓℓℓ′′ℓ′′ acceptance are 
evaluated using mcfm and by varying the renormalization and fac-
torization scales, up and down, by a factor of two with respect to 
the default values µR = µF = mZ. The variations in the acceptance 
are 0.1% (NLO qq → ZZ) and 0.4% (gg → ZZ), and can be neglected. 
Uncertainties related to the choice of the PDF and the strong cou-
pling constant αs are evaluated following the PDF4LHC [31] pre-
scription and using CT10, MSTW08, and NNPDF [32] PDF sets and 
found to be 4% (NLO qq → ZZ) and 5% (gg → ZZ).

The uncertainties in Z + jets, WZ + jets, and tt yields reflect the 
uncertainties in the measured values of the misidentification rates 
and the limited statistics of the control regions in the data, and 
vary between 20% and 70%.

The uncertainty in the unfolding procedure discussed in Sec-
tion 7 arises from differences between sherpa and powheg for the 
unfolding factors (2–3%), from scale and PDF uncertainties (4–5%), 
and from experimental uncertainties (4–5%).

7. The ZZ cross section measurement

The measured and expected event yields for all decay channels 
are summarized in Table 1. The recently discovered Higgs parti-
cle with the mass of 125 GeV does not contribute to this analysis 
as background because of the phase space selection requirements. 

The reconstructed four-lepton invariant mass distributions for the 
4e, 4µ, 2e2µ, and combined ℓℓττ decay channels are shown in 
Fig. 1. The shape of the background is taken from data. The recon-
structed four-lepton invariant mass distribution for the combined 
4e, 4µ, and 2e2µ channels is shown in Fig. 2 (upper left). Fig. 2
(upper right) presents the invariant mass of the Z1 candidates. 
Figs. 2 (lower left) and (lower right) show the correlation between 
the reconstructed Z1 and Z2 masses for (lower left) 4e, 4µ, and 
2e2µ and for (lower right) ℓℓττ final states. The data are well 
reproduced by the signal simulation and with background predic-
tions estimated from data.

The measured yields are used to evaluate the total ZZ produc-
tion cross section. The signal acceptance is evaluated from sim-
ulation and corrected for each individual lepton flavor in bins of 
pT and η using factors obtained with the “tag-and-probe” tech-
nique. The requirements on pT and η for the particles in the 
final state reduce the full possible phase space of the ZZ → 4ℓ
measurement by a factor within a range of 0.56–0.59 for the 4e, 
4µ, and 2e2µ, depending on the final state, and by a factor of 
0.18–0.21 for the ℓℓττ final states, with respect to all events gen-
erated in the mass window 60 < mZ1 , mZ2 < 120 GeV. The branch-
ing fraction for Z → ℓ′ℓ′ is (3.3658 ± 0.0023)% for each lepton 
flavor [33].

To include all final states in the cross section calculation, a si-
multaneous fit to the number of observed events in all decay 
channels is performed. The likelihood is written as a combination 
of individual channel likelihoods for the signal and background 

• So far all observations consistent with SM 
expectations
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Double Vector Boson Production - CMS Summary

• Overall excellent agreement with SM expectations - Consistent for 7, 8 and 13TeV
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theoσ / expσProduction Cross Section Ratio:   
0.5 1 1.5 2

CMS PreliminaryJuly 2016

All results at:
http://cern.ch/go/pNj7

γγ  0.12± 0.01 ±1.06 -15.0 fb
(NLO th.), γW  0.13± 0.03 ±1.16 -15.0 fb

(NLO th.), γZ  0.05± 0.01 ±0.98 -15.0 fb
(NLO th.), γZ  0.05± 0.01 ±0.98 -119.5 fb

WW+WZ  0.14± 0.13 ±1.01 -14.9 fb
WW  0.09± 0.04 ±1.07 -14.9 fb
WW  0.08± 0.02 ±1.00 -119.4 fb
WW  0.08± 0.05 ±0.96 -12.3 fb
WZ  0.06± 0.07 ±1.08 -14.9 fb
WZ  0.07± 0.03 ±1.04 -119.6 fb
WZ  0.07± 0.06 ±0.80 -12.3 fb
ZZ  0.07± 0.13 ±0.97 -14.9 fb
ZZ  0.08± 0.06 ±0.97 -119.6 fb
ZZ  0.04± 0.11 ±0.90 -12.6 fb

7 TeV CMS measurement (stat,stat+sys) 
8 TeV CMS measurement (stat,stat+sys) 
13 TeV CMS measurement (stat,stat+sys) 

CMS measurements
 theory(NLO)vs. NNLO 
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Summary
• The (electroweak) Standard Model combines QED and the weak interaction theory 

to describe electromagnetic and weak interactions - based on the Gauge Group 
SU(2) x U(1)


• It has been extremely successful in describing all observations to date


• Its predictions are tested by measurements of 


• masses


• cross-sections (and production asymmetries - not covered)


• decay widths


• triple gauge couplings - particularly sensitive to New Physics


• The Tevatron provides the most precise W mass measurement to date - 
global uncertainty 15 MeV - LHC might ultimately go to 5 MeV

• requires very precise understanding of detectors and excellent control of all 

systematics - first ATLAS results expected tomorrow!
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Next Lecture: Top Physics, F. Simon 19.12.2016
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Schedule
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1. Introduction	 17.10.

2. Accelerators	 24.10.


----------- no lecture ------------- 31.10. 
3. Particle Detectors I	 07.11.

4. Particle Detectors II	 14.11.

5. Trigger, Data Acquisition, Computing	 21.11.

6. Monte Carlo Generators and Detector Simulation	 28.11.

7. QCD, Jets, Proton Structure	 05.12.

8. Tests of the Standard Model	 12.12

9. Top Physics	 19.12.


----------- Christmas ---------------------

10. Higgs Physics I	 09.01.

11. Higgs Physics II	 16.01.	 

12. Physics beyond the SM	 23.01.

13. LHC Outlook & Future Collider Projects  	 30.01


----------- no lecture ------------- 	 06.02                           


