Astro-, Particle and Nuclear Physics of Dark Matter Direct Detection

Riccardo Catena

Chalmers University

March 28, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CHALMERS

Astro-, Particle and Nuclear Physics of Dark Matter Direct Detection

Astrophysics Nuclear Physics Particle Physics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Riccardo Catena Jan Conrad Christian Forssén Alejandro Ibarra Federica Petricca Basics of dark matter direct detection (DD)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- DD Astrophysics
- DD Particle Physics
- DD Nuclear Physics
- Summary

Direct detection

Motivation and strategy:

Kinematics:

a) For $m_{\chi} \sim 100$ GeV, incoming flux $\sim 7 \times 10^4$ particles cm⁻² s⁻¹ b) $E_{\rm nr} = (2\mu_T^2 v^2/m_T) \cos^2 \theta \sim \mathcal{O}(10)$ keV

Differential rate of dark matter-nucleus scattering events in terrestrial detectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Modulation: The Earth's orbit inclination induces an annual modulation in the rate of recoil events

$$\mathcal{A}(E_{-}, E_{+}) = \frac{1}{E_{+} - E_{-}} \frac{1}{2} \left[\mathcal{R}(E_{-}, E_{+}) \Big|_{\text{June 1st}} - \mathcal{R}(E_{-}, E_{+}) \Big|_{\text{Dec 1st}} \right]$$

Astrophysics

<□ > < @ > < E > < E > E のQ @

- Local dark matter density from astronomical data:
 - Local methods
 - Global methods
- Local dark matter velocity distribution from astronomical data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Local dark matter velocity distribution from simulations
- Halo-independent methods

Silverwood et al., 1507.08581

• ρ_{χ} from the Jeans-Poisson system:

$$\Sigma(R,Z) = -\frac{1}{2\pi G} \left[\int_0^Z dz \, \frac{1}{R} \frac{\partial(RF_R)}{\partial R} + F_z(R,Z) \right]$$
$$F_z(R,Z) = \frac{1}{\nu} \frac{(\nu \sigma_z^2)}{\partial z} + \frac{1}{R\nu} \frac{\partial(R\nu \sigma_{Rz})}{\partial R}$$

• $F_R(R,Z) = -\partial \Phi/\partial R$, $F_z(R,Z) = -\partial \Phi/\partial z$ and $\Sigma(R,Z) = \int_{-Z}^{Z} dz \sum_j \rho_j(R,z)$

Global methods for ho_{χ} / basic idea

Assume a mass model for the Milky Way:

- $\mathbf{x}
 ightarrow
 ho_j(\mathbf{x},\mathbf{p})$ j mass densities at \mathbf{x}
- $\mathbf{p} = (p_1, p_2, \dots)$ model parameters

Compute physical observables, e.g.:

- Terminal velocities
- Radial velocities
- Velocity dispersion of stellar populations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Oort's constants

- ...

- Compare theory and observations
- Infer $ho_{\chi}(\mathbf{x}_{\odot},\mathbf{p})$ from \mathbf{p}

Global methods for ρ_χ / two implementations

Catena and Ullio, 0907.0018

- Emphasis on correlations
 - Large number of model parameters, e.g. $\sim \mathcal{O}(10)$
 - One mass model
 - It allows to assess / identify correlations between parameters / observables

locco, Pato and Bertone, 1502.03821, 1504.06324

- Emphasis on systematics
 - Few model parameters, e.g. $\sim 2/3$
 - Many mass models can be tested
 - It allows to estimate the systematic error / theoretical bias that might affect the first approach

Determination of f_{χ} / self-consistent methods

Catena et. al, 1111.3556; Bhattacharjee et al., 1210.2328; Bozorgnia et al., 1310.0468

Solve for F_{χ} the system:

$$\rho_{\chi}(\mathbf{x}, \mathbf{p}) = \int \mathrm{d}\mathbf{v} \, F_{\chi}(\mathbf{x}, \mathbf{v}; \mathbf{p})$$

$$\mathbf{v} \cdot \nabla_{\mathbf{x}} F_{\chi} - \nabla_{\mathbf{x}} \Phi \cdot \nabla_{\mathbf{v}} F_{\chi} = 0 \qquad \text{(Vlasov)}$$
$$\nabla^2 \Phi = 4\pi G \sum_j \rho_j \qquad \text{(Poisson)}$$

• Then:
$$f_{\chi}(\mathbf{v}) = F_{\chi}(\mathbf{x}_{\odot}, \mathbf{v}; \mathbf{p}) / \rho_{\chi}(\mathbf{x}_{\odot}, \mathbf{p})$$

Determination of f_{χ} / self-consistent methods

If $\rho_{\chi}(r)$ and $\Phi(r)$ are spherically symmetric, and $F_{\chi}(\mathbf{x}, \mathbf{v}) = F_{\chi}(\mathbf{x}, |\mathbf{v}|)$ is isotropic, then:

-
$$F_{\chi}(\mathbf{x},\mathbf{v})=F_{\chi}(\mathcal{E})$$
, where $\mathcal{E}=-1/2|\mathbf{v}|^2+\psi$ and $\psi=-\Phi+\Phi_{vir}$

- There is a unique self-consistent solution for F_{χ}

It is given by

$$F_{\chi}(\mathcal{E}) = \frac{1}{\sqrt{8}\pi^2} \left[\int_0^{\mathcal{E}} \frac{d^2 \rho_{\chi}}{d\psi^2} \frac{d\psi}{\sqrt{\mathcal{E}} - \psi} + \frac{1}{\sqrt{\mathcal{E}}} \left(\frac{d\rho_{\chi}}{d\psi} \right)_{\psi=0} \right]$$

Determination of f_{χ} / numerical simulations

Bozorgnia et al., 1601.04707

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Halo-independent methods

For a given m_{χ} , different experiments can be compared in the (v_{\min},η) plane, where

$$\eta(v_{\min}) = \int_{|\mathbf{v}| > v_{\min}} \mathrm{d}^{3}\mathbf{v} |\mathbf{v}| f_{\chi}(\mathbf{v} + \mathbf{v}_{\oplus})$$

Fox et al., 1011.1915

 The initial idea has been extended to realistic detectors and general interactions

See Gondolo's and Wild's talks, respectively

 A halo-independent method to, e.g., optimize compatibility between different experiments has been presented at MIAPP
 See Rappelt's talk

Particle Physics

<□ > < @ > < E > < E > E のQ @

Non Relativistic Effective Field Theory (NREFT)

New signatures:

- Earth-scattering of dark matter
- Dark matter-induced bremsstrahlung
- Dark matter-induced inelastic nuclear transitions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NREFT I

Fan et al., 1008.1591; Fitzpatrick et al., 1203.3542

- It is based upon two assumptions:
 - there is a separation of scales: $|{\bf q}|/m_V \ll 1,$ where m_V is the mediator mass
 - dark matter is non-relativistic: $v/c \ll 1$

It follows that the Hamiltonian for dark matter-nucleon interactions is

$$\hat{\mathcal{H}}(\mathbf{r}) = \sum_{ au=0,1} \sum_k c_k^ au \hat{\mathcal{O}}_k(\mathbf{r}) \, t^ au$$

- $\hat{\mathcal{O}}_k(\mathbf{r})$ are Galilean invariant operators
- $t^0 = \mathbb{1}_{isospin}, t^1 = \tau_3$

NREFT II

Inspection of the operators $\hat{\mathcal{O}}_k(\mathbf{r})$ shows that at linear order in the transverse relative velocity $\hat{\mathbf{v}}^{\perp}$, they only depend on 5 nucleon charges and currents:

$$\mathbb{1}_N$$
 $\hat{\mathbf{S}}_N$ $\hat{\mathbf{v}}^{\perp}$ $\hat{\mathbf{v}}^{\perp} \cdot \hat{\mathbf{S}}_N$ $\hat{\mathbf{v}}^{\perp} imes \hat{\mathbf{S}}_N$

see also Gondolo's talk

 This leads to 8 independent nuclear response functions (if nuclear ground states are CP eigenstates)

Kavanagh, Catena and Kouvaris, 1611.05453

- In the standard paradigm $f = f_{halo}$, where f_{halo} is the velocity distribution in the halo
- However, before reaching the detector, dark matter particles have to cross the Earth.

Earth-crossing unavoidably distorts f_{halo} if dark matter interacts with nuclei, which implies $f \neq f_{halo}$

Two processes contribute to the Earth-scattering of dark matter; attenuation and deflection:

 As a result, the dark matter velocity distribution at detector can be written as follows:

$$f(\mathbf{v},\gamma) = f_A(\mathbf{v},\gamma) + f_D(\mathbf{v},\gamma)$$

• f_A and f_D depends on the input f_{halo} , m_{χ} , σ , the Earth composition and $\gamma = \cos^{-1}(\langle \hat{\mathbf{v}}_{\chi} \rangle \cdot \hat{\mathbf{r}}_{det})$

Key result: since γ depends on the detector position and on time, the same is true for $f(\mathbf{v},\gamma)$

 As a result, the dark matter velocity distribution at detector can be written as follows:

$$f(\mathbf{v},\gamma) = f_A(\mathbf{v},\gamma) + f_D(\mathbf{v},\gamma)$$

• f_A and f_D depends on the input f_{halo} , m_{χ} , σ , the Earth composition and $\gamma = \cos^{-1}(\langle \hat{\mathbf{v}}_{\chi} \rangle \cdot \hat{\mathbf{r}}_{det})$

Key result: since γ depends on the detector position and on time, the same is true for $f(\mathbf{v},\gamma)$

In the following,
$$N_{\rm pert} = N_{f_A+f_D,\sigma}$$
 and $N_{\rm free} = N_{f_{\rm halo},\sigma}$

Earth-scattering of dark matter / position dependence

Kavanagh, Catena and Kouvaris, 1611.05453

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Earth-scattering of dark matter / position dependence

Kavanagh, Catena and Kouvaris, 1611.05453

Earth-scattering of dark matter / time dependence

Kavanagh, Catena and Kouvaris, 1611.05453

Dark matter-induced bremsstrahlung

Kouvaris and Pradler, 1607.01789

Photon emission resulting from DM-nucleus scattering:

• The available photon energy obeys $\omega \leq \mu_T v^2/2$, and therefore

$$E_{\rm nr;max} = 4(m_\chi/m_T)\omega_{\rm max} \ll \omega_{\rm max}$$

Dark matter-induced bremsstrahlung

Kouvaris and Pradler, 1607.01789

Dark matter-induced inelastic nuclear transitions

McCabe, 1512.00460

 Elastic scattering vs. inelastic scattering where an excited xenon isotope decays emitting a photon:

The minimum speed to recoil with an energy E_{nr} additionally depends on the excitation energy E^* :

$$v_{\min} = \sqrt{\frac{m_T E_{\mathrm{nr}}}{2\mu_T^2}} + \frac{E^*}{\sqrt{2m_A E_{\mathrm{nr}}}}$$

Dark matter-induced inelastic nuclear transitions

McCabe, 1512.00460

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Nuclear Physics

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Highlights

Chiral Effective Field Theory:

- Matching
- Two-body currents
 see Hoferichter's and Gazit's talks

- Ab initio methods
 - Uncertainties quantification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

see Gazda's talk

Two-body currents

Klos, Menendéz, Gazit and Schwenk, 1304.7684;

Akerib et al., 1602.03489

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Uncertainties quantification

Gazda, Catena and Forssén, 1612.09165

Summary

- Dark matter direct detection is evolving into a cross-disciplinary research field at the interface of Astro-, Particle and Nuclear Physics
- Astrophysical uncertainties remain significant, but are increasingly better understood. Halo-independent methods have progressed rapidly in recent years
- Novel signatures of particle dark matter have been identified and are currently under investigation
- Dedicated large-scale nuclear structure calculations have been performed. Ab initio methods have recently been explored, and will be further developed
- Experimental methods have improved dramatically in the past few years. Hopefully, what we have learned in our MIAPP programme will soon be applied to interpret real data.