Multi-Scalar production \& self-coupling measurements at hadron colliders

Andreas Papaefstathiou

introduction

Nichef

Ni[T]

- direct production, in this talk:
$\mathcal{S}_{1}=\mathcal{S}_{2}=\mathcal{S}_{3}=h \quad \rightarrow$ Higgs pair production. $\quad \rightarrow \lambda_{3}$
$\mathcal{S}_{1}=\mathcal{S}_{2}=\mathcal{S}_{3}=\mathcal{S}_{4}=h \quad \rightarrow$ Higgs triple production $\rightarrow \lambda_{4}$
$\mathcal{S}_{1}=h, \mathcal{S}_{2}=S, \mathcal{S}_{3}=\{S, h\} \rightarrow$ Higgs-New Scalar production. $\rightarrow \lambda_{H S}$ "portal coupling"

comments (I):

- "self-coupling" diagrams not the only diagrams contributing to the multi-Scalar final states.
- in fact, could be suppressed with respect to other diagrams: e.g. propagator suppression.

comments (II):

- the scalar "self-couplings" can appear in loop diagrams.
- "precision" measurements could probe them.

contents:

- multi-Higgs ($\boldsymbol{h} \boldsymbol{h}, \boldsymbol{h} \boldsymbol{h} \boldsymbol{h}$) production,
- indirect constraints on Higgs selfcouplings,
- Higgs-Heavy Scalar (hS) associated production,
- conclusions.

multi-Higgs production

motivation

- "standard" electroweak recipe in Standard Model:
- ingredients:
$S U(2) \times U(1)$ gauge symmetry,
+ complex doublet scalar, H,
+ potential for $H: \mathcal{V}\left(H^{\dagger} H\right)$.

motivation

- instructions:
- choose minimum in particular direction, keep $\mathrm{U}(1)$ invariance \hookrightarrow electroweak symmetry breaking.
- fluctuations of scalar field about minimum.
- gauge transformation: absorb Goldstone modes into the gauge bosons.

$$
\mathcal{V}\left(H^{\dagger} H\right)
$$

motivation

- instructions:
- choose minimum in particular direction, keep $\mathrm{U}(1)$ invariance \hookrightarrow electroweak symmetry breaking.
- fluctuations of scalar field about minimum.
- gauge transformation: absorb Goldstone modes into the gauge bosons.

motivation

- instructions:
- choose minimum in particular direction, keep $\mathrm{U}(1)$ invariance \hookrightarrow electroweak symmetry breaking.
- fluctuations of scalar field about minimum.
- gauge transformation: absorb Goldstone modes into the gauge bosons.

$$
\mathcal{V}\left(H^{\dagger} H\right)
$$

motivation

- the potential for the physical scalar Higgs boson, h :

$$
\mathcal{L} \supset-\frac{1}{2} m_{h}^{2} h^{2}-\frac{m_{h}^{2}}{2 v} h^{3}-\frac{m_{h}^{2}}{8 v^{2}} h^{4}
$$

- $v=246 \mathrm{GeV}$ [through four-fermion interactions via the Fermi constant.] and Higgs boson mass, $m_{h} \sim 125 \mathrm{GeV}$.
- can predict all coefficients of \boldsymbol{h}^{n}, within SM.
- consistency with SM a probe for new physics (c_{3}, d_{4}).

motivation

- the potential for the physical scalar Higgs boson, h :

$$
\mathcal{L} \supset-\frac{1}{2} m_{h}^{2} h^{2}-\frac{m_{h}^{2}}{2 v}(\overbrace{1+c_{3}}) h^{3}-\frac{m_{h}^{2}}{8 v^{2}}\left(1+d_{4}\right) h^{4}
$$

- $v=246 \mathrm{GeV}$ [through four-fermion interactions via the Fermi constant.] and Higgs boson mass, $m_{h} \sim 125 \mathrm{GeV}$.
- can predict all coefficients of \boldsymbol{h}^{n}, within SM.
- consistency with SM a probe for new physics (c_{3}, d_{4}).

multi-Higgs cross sections

- cross sections small for > one Higgs boson:

process	pp@14 TeV	pp@100 TeV
single Higgs	$\sim 50000 \mathrm{fb}$	$\sim 800000 \mathrm{fb}$
double Higgs	$\sim 50 \mathrm{fb}$	$\sim 1800 \mathrm{fb}$
triple Higgs	$\sim 0.1 \mathrm{fb}$	$\sim 5 \mathrm{fb}\left(10^{-3}\right)$

[see, e.g., LHCHXSWG YR4: 1610.07922 and FCC-hh Higgs report: 1606.09408.]

multi-Higgs cross sections

- cross sections small for > one Higgs boson:

process	pp@14 TeV	pp@100 TeV
single Higgs	$\sim 50000 \mathrm{fb}$	$\sim 800000 \mathrm{fb}$
double Higgs	$\sim 50 \mathrm{fb}$	$\sim 1800 \mathrm{fb}$
triple Higgs		$\sim 5 \mathrm{fb}$

[see, e.g., LHCHXSWG YR4: 1610.07922 and FCC-hh Higgs report: 1606.09408.]

multi-Higgs cross sections

- cross sections small for > one Higgs boson:

[see, e.g., LHCHXSWG YR4: 1610.07922 and FCC-hh Higgs report: 1606.09408.]

Higgs boson pair production

- dominant piece of $\boldsymbol{h} \boldsymbol{h}$: gluon fusion, via heavy quark loops, [for VBF $\boldsymbol{h} \boldsymbol{h}$ study: Bishara, Contino, Rojo, 1611.03860]
- at leading order:

- cannot use heavy top mass approximation (Higgs $\underline{\text { Effective Field Theory }}=\mathbf{H E F T}$) to "shrink" loops, since:

$$
Q^{2} \geq 4 m_{h}^{2}>m_{t}^{2}
$$

LO hh: anatomy

$$
\mathcal{M}=\mathcal{M}_{\triangle}+\mathcal{M}_{\square}
$$

with $\mathcal{M}_{\triangle}=\alpha_{\triangle} A_{1 \mu \nu}$ and $\mathcal{M}_{\square}=\alpha_{\square} A_{1 \mu \nu}+\beta_{\square} A_{2 \mu \nu}$
tensors: $A_{1} \cdot A_{2}=0$ and $A_{1} \cdot A_{1}=A_{2} \cdot A_{2}=2$
correspond to spin configurations for the gluons:

$$
A_{1}: S_{z}=0 \quad A_{2}: S_{z}=2
$$

[Plehn, Spira, Zerwas, hep-ph/9603205, Binoth, Karg, Kauer, Rückl, hep-ph / 0608057]

LO hh: anatomy

$$
\mathcal{M}=\mathcal{M}_{\triangle}+\mathcal{M}_{\square}
$$

with $\mathcal{M}_{\triangle}=\alpha_{\triangle} A_{1 \mu \nu}$ and $\mathcal{M}_{\square}=\alpha_{\square} A_{1 \mu \nu}+\beta_{\square} A_{2 \mu \nu}$
$\Rightarrow|\mathcal{M}|^{2} \propto\left|\alpha_{\Delta}\right|^{2}+2 \operatorname{Re}\left\{\alpha_{\Delta} \alpha_{\square}\right\}+\left|\alpha_{\square}\right|^{2}+\left|\beta_{\square}\right|^{2}$
$\sigma_{h h}^{\mathrm{LO}}(14 \mathrm{TeV})=\left[5.22\left(\frac{\lambda_{3}}{\lambda_{3, \mathrm{SM}}}\right)^{2}-25.1\left(\frac{\lambda_{3}}{\lambda_{3, \mathrm{SM}}}\right)+37.3\right] \mathrm{fb}$
[Goertz, $\underline{\text { AP }}$, Yang, Zurita, 1301.3492]

NLO hh

- full NLO (two-loop) calculation became available in 2016.
[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zicke, 1604.06447]
NLO K-factor ~ 2.
[note also asymptotic expansion: Degrassi, Giardino, Gröber, 1607.04251]

scale variation uncertainty: $\mathrm{O}(10 \%)$
[c.f. PDF uncertainty:
$\mathrm{O}(10 \%)]$

NLO hh

- full NLO (two-loop) calculation became available in 2016.
[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zicke, 1604.06447]
NLO K-factor ~ 2.
[note also asymptotic expansion: Degrassi, Giardino, Gröber, 1607.04251]

calculation important.

NLO hh

- full NLO (two-loop) calculation became available in 2016.
[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zicke, 1604.06447]
NLO K-factor ~ 2.
[note also asymptotic expansion: Degrassi, Giardino, Gröber, 1607.04251]

calculation important.

Next step: match to a parton shower!

[even] higher orders for $\boldsymbol{h} \boldsymbol{h}$

- NNLO HEFT: cross section increase wrt. NLO: ~20\%. [de Florian, Mazzitelli, 1309.6594]
- threshold resummation to NNLL matched to NLO HEFT. [Shao, Li, Li Wang, 1301.1245]
- NNLL matched to NNLO HEFT. [de Florian, Mazzitelli, 1505.07122]
- NLL + full NLO \boldsymbol{q}_{T} resummation. [Ferrera, Pires, 1609.01691]

hh/hhh Monte Carlos

- up to recently: mostly private implementations, based on LO.
- MG5_aMC@NLO: [Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro,1401.7340, Maltoni, Vryonidou, Zaro, 1408.6542]
- $h h$ and $h h h, \mathrm{LO}+$ real emission with full top mass dep. + HEFT virtuals, (matched),
- HERWIG 7: [Maierhöfer, AP 1401.0007]
- $h h$, LO, $\mathrm{D}=6 \mathrm{EFT}, h h+0 \mathrm{j}$ and $h h+1 \mathrm{j}$ merged to the parton shower.
- + looking forward to matched full NLO + parton shower.

multi-Higgs searches at colliders

hh@LHC

[taken from R. Salerno, Higgs Couplings 2015]

hh @ LHC

- not sensitive to SM Higgs pair production until ~ a few hundred inv. femtobarn.
- currently: limit is at ~ 50 times the SM cross section.
[e.g. ATLAS, 1509.04670]

$h h \rightarrow(b \bar{b})(b \bar{b})$	boosted or resolved analyses, CMS: limits on Radion, KK grav., ATLAS: heavy Higgs, non-resonant
$h h \rightarrow(b \bar{b})\left(\tau^{+} \tau^{-}\right)$	CMS: $0,1,2 \mathrm{~b}$-jets, $\tau_{\mathrm{h}} \tau_{\mathrm{h}}$, e $\tau_{\mathrm{h}}, \mu \tau_{\mathrm{h}}$, ATLAS: $1,2+\mathrm{b}$-jets, $\mathrm{e}_{\mathrm{h}}, \mu \tau_{\mathrm{h}}$,
$h h \rightarrow(b \bar{b})(\gamma \gamma)$	CMS: 0, 1, 2+b-jets. ATLAS: 2 b -jets.

[+ multi-lepton/multi-photon final states.]

hh @ HL-LHC

- high-luminosity LHC (pp@14 TeV, $3000 \mathrm{fb}^{-1}$) pessimistic, e.g.:
- CMS, all channels, 2σ observation of SM hh,
- ATLAS (@ 95\% C.L.):
- $(b \bar{b})(\gamma \gamma), \lambda_{3} / \lambda_{3, S M}$ in $[-1.3,8.7]$,
- $(b \bar{b})\left(\tau^{+} \tau^{-}\right), \lambda_{3} / \lambda_{3, S M}$ in $[-4,12]$.
- experiments discussing combination of results.
[see, e.g., Goertz, AP, Yang, Zurita, 1301.3492]
- $\boldsymbol{O}(1)$ measurement after HL-LHC (?).

double Higgs production at 100 TeV

- cross section increases dramatically at pp@100 $\mathbf{T e V}(\sim 1.8 \mathrm{pb})$,
- several pheno studies focus on $h h \rightarrow(b \bar{b})(\gamma \gamma)$.
[Azatov, Contino, Panico, Son, 1502.00539, Barr, Dolan, Englert, de Lima, Spannowsky, 1412.7154, He, Ren, Yao, 1506.03302]
- detailed dedicated study as part of the FCC-hh Higgs report [1600.09408].
- $\pm \mathbf{3} \%$ on λ_{3} at $30 \mathrm{ab}^{-1}$ of integrated luminosity.
e.g. variation of precision on λ_{3} with tagging rates.
[FCC-hh Higgs, 1606.09408]

double Higgs production at 100 TeV

- "new" final states can become accessible, e.g.:

$$
\begin{aligned}
& h h \rightarrow(b \bar{b})(Z Z) \rightarrow(b \bar{b})(4 \ell) \quad \text { (signal ~ a few, background ~a few) } \\
& h h \rightarrow(b \bar{b})\left(W^{+} W^{-}\right) /\left(\tau^{+} \tau^{-}\right) \rightarrow(b \bar{b})(2 \ell) \text { [AP, 1504.04621] } \\
&(\text { signal } \sim \text { a few 10s, background ~a few 100s) } \\
& h h \rightarrow\left(W^{+} W^{-}\right)\left(W^{+} W^{-}\right) \rightarrow 3 \ell j j \quad \text { [Li, Li, Yan, Zhao, 1503.07611] }
\end{aligned}
$$

BSM effects in $\boldsymbol{h} \boldsymbol{h}$?

new particles

- $\boldsymbol{h} \boldsymbol{h}$ can probe the presence of new particles:
- (a) e.g. in the loops:

- (b) e.g. in a propagator coupling to two Higgs bosons:

[$h h$ resonances have already been searched for by ATLAS \& CMS in Run 1: 1406.5053, CMS-PAS-HIG-13-032, 1503.04114]

BSM through $\mathrm{D}=6$ effective field theory

\Rightarrow construct $D=6$ operators made of SM fields:
operators built out of SM fields, respecting SM gauge symmetries $=$ Physics

$h h$ in $\mathrm{D}=6 \mathrm{EFT}$

[Goertz, AP Yang, Zurita, 1410.3471]

hh in $\mathrm{D}=6 \mathrm{EFT}$

- LHC and FCC-hh phenomenology, e.g.:

[Goertz, AP Yang, Zurita, 1410.3471]
cross section variation with respect to coeffs.
$\left[\sigma_{S M}(14 \mathrm{TeV}) \sim 40 \mathrm{fb}\right]$
[also: Azatov, Contino,
Panico, Son, 1502.00539]

hh in $\mathrm{D}=6 \mathrm{EFT}$

- LHC and FCC-hh phenomenology, e.g.:

hh in $\mathrm{D}=6 \mathrm{EFT}$

- LHC phenomenology, e.g.:

[Goertz, $\underline{\text { AP }}$, Yang, Zurita, 1410.3471]

1σ constraint, on the plane of two Wilson coefs.:

$C_{t}-C_{6}$
(LHC14, $600 \mathrm{fb}^{-1}$)
[see also: Azatov, Contino,
Panico, Son, 1502.00539]

triple Higgs production at 100 TeV

- tiny cross section at LHC@14 TeV (~0.1 fb),
- still challenging at $100 \mathrm{TeV}: \mathrm{SM} \sigma \sim 5 \mathrm{fb}$!
[Plehn, Rauch, hep-ph/0507321, Binoth, Karg, Kauer, Rückl, hep-ph/0608057, Maltoni, Vryonidou, Zaro, 1408.6542]
- 'high-lumi' 100 TeV machine could probe it $\left(30 \mathrm{ab}^{-1}\right)$.
- e.g. in $h h h \rightarrow(b \bar{b})(b \bar{b})(\gamma \gamma)$. [APP Sakurai, 1508.06524]

$$
h h h \rightarrow(b \bar{b})(b \bar{b})\left(\tau^{+} \tau^{-}\right),(b \bar{b})\left(\tau^{+} \tau^{-}\right)\left(\tau^{+} \tau^{-}\right) \text {[Fuks, Kim, Lee, 1510.07697] }
$$

- also: $\quad h h h \rightarrow(b \bar{b})\left(W^{+} W^{-}\right)\left(W^{+} W^{-}\right) \quad$ [Kilian, Sun, Yan, Zhao, Zhao 1702.03554]

triple Higgs production at 100 TeV

- tiny cross section at LHC@14 TeV (~0.1 fb),

- still challenging at $100 \mathrm{TeV}: \mathrm{SM} \sigma \sim 5 \mathrm{fb}$!
[Plehn, Rauch, hep-ph/0507321, Binoth, Karg, Kauer, Rückl, hep-ph/0608057, Maltoni, Vryonidou, Zaro, 1408.6542]
- 'high-lumi' 100 TeV machine could probe it $\left(30 \mathrm{ab}^{-1}\right)$.
- e.g. in $h h h \rightarrow(b \bar{b})(b \bar{b})(\gamma \gamma)$. [APP Sakurai, 1508.06524]

$$
h h h \rightarrow(b \bar{b})(b \bar{b})\left(\tau^{+} \tau^{-}\right),(b \bar{b})\left(\tau^{+} \tau^{-}\right)\left(\tau^{+} \tau^{-}\right) \text {[Fuks, Kim, Lee, 51510.07697] }
$$

- also: $\quad h h h \rightarrow(b \bar{b})\left(W^{+} W^{-}\right)\left(W^{+} W^{-}\right)$[Kilian, Sun, Yan, Zhao, Zhao 1020.03554]

triple Higgs production at 100 TeV

[AP, Sakurai, 1508.06524]

$$
\begin{gathered}
h h h \rightarrow(b \bar{b})(b \bar{b})(\gamma \gamma) \\
\left(30 \mathrm{ab}^{-1}\right)
\end{gathered}
$$

$$
\lambda_{4} / \lambda_{4, \mathrm{SM}}=1+d_{4}
$$

$$
\lambda_{3} / \lambda_{3, \mathrm{SM}}=1+c_{3}
$$

for $\lambda_{3}=\lambda_{3, \mathrm{SM}} \Rightarrow \lambda_{4} / \lambda_{4, \mathrm{SM}} \in[\sim-4, \sim+16] @ 95 \%$ C.L.

left as an exercise

- associated production modes: e.g. $t \bar{t} h h$
\rightarrow the leading channel if triple coupling $>$ SM value.
[Englert, Kraus, Spannowsky, Thompson, 1409.8074]
[+ VBF, Whh, Zhh]

- more BSM studies!

multi-Higgs: summary

HL-LHC
 ($14 \mathrm{TeV}, 3000 \mathrm{fb}^{-1}$)

pp@100 TeV
 (30 ab ${ }^{-1}$)

$\mathcal{O}(1)$
 $\mathcal{O}(5 \%)$

Soss

$$
\mathcal{O}(1)-\mathcal{O}(10)
$$

indirect constraints on Higgs self-couplings

indirect constraints from single Higgs

- e.g. single Higgs boson production observables @ hadron col1ers• [Gorbahn, Haisch, 1607.03773, Degrassi, Giardino, Maltoni, Pagani, 1607.04251, Bizoń, Gorbahn, Ulrich Haisch, Zanderighi, 1610.05771]

indirect constraints from single Higgs

[Gorbahn, Haisch, 1607.03773, Degrassi, Giardino, Maltoni, Pagani, 1607.04251, Bizoń, Gorbahn, Ulrich Haisch, Zanderighi, 1610.05771]
e.g.
$p p \rightarrow h Z$

$p p \rightarrow t \bar{t} h$

- bounds competitive with those from Higgs boson pair production.

indirect constraints from precision observables

[Degrassi, Fedele, Giardino, 1702.01737, Kribs, Maier, Rzehak, Spannowsky, Waite, 1702.07678]

- two approaches based on "precision observables":
- \boldsymbol{W} mass \& $\sin ^{2} \boldsymbol{\theta}_{\text {efff }}{ }^{[D e g r a s s i, ~ F e d e l e, ~ G i a r d i n o, ~ 1720.01737] ~}$
- S \& T parameters. [Kribs, Maier Reehak, Spamowsky, Waite, 7720.7778]
- Higgs boson triple self-coupling modifications appear at two-loops.
- no quartic coupling contributions at this order!
- approach has been shown to be gauge invariant.
- again: results competitive to direct $h \boldsymbol{h}$.

(current) constraints summary

 λ_{3} allowed regions @ 95\% C.L. (multiples of SM)| | "single Higgs": | EW precision $\left(m_{W} \& \sin ^{2} \theta_{\text {eff }}\right)+$ "single Higgs": |
| :---: | :---: | :---: |
| indirect | $[-9.4,17.0]$
 [Degrassi, Giardino, Maltoni, Pagani, 1607.04251] | $[-8.2,13.7]$
 [Degrassi, Fedele, Giardino, 1702.01737] |
| | $V h+V B F h:$ | EW precision (S \& T): |
| | $[-14.0,16.3]$
 [Bizoń, Gorbahn, Ulrich Haisch, Zanderighi, 1610.05771] | $[-14.0,17.4]$
 [Kribs, Maier, Rzehak, Spannowsky, Waite, 1702.07678] |
| c.f. direct hh: | $[-14.5,19.1]$
 [ATLAS, combination of channels, 1509.04670] | $[-8.4,13.4]$
 [ATLAS, 4b, ATLAS-CONF-2016-049] |

Higgs-New Scalar associated production

new scalar resonances

- the Higgs boson is the first (seemingly) fundamental scalar we know of: there may be more waiting to be discovered!
- if so: they could be related to the Higgs boson and EWSB.
- could we measure their couplings to the Higgs boson?

single production of a singlet scalar S

[Carmona, Goertz, AP 1606.02716]

single production of a singlet scalar S

[Carmona, Goertz, AP 1606.02716]

associated production with a Higgs boson

Nillinef

associated production with a Higgs boson

$$
\text { e.g. from: } \lambda_{H S}|H|^{2} S^{2} \rightarrow \lambda_{H S}(v+h)^{2} S^{2}
$$

easy to calculate the cross section for associated production with h, if single production would be observed.

truth is stranger than fiction...

- we won't know the initial-state partons.
- and, in general, there are other diagrams contributing:

$$
\Rightarrow \rho=\frac{\sigma(p p \rightarrow h S \rightarrow h \chi \chi)}{\sigma(p p \rightarrow S \rightarrow \chi \chi)}=a \lambda_{H S}^{2}+b \lambda_{H S}+c
$$

a, b, c : obtained via Monte Carlo.

- the simplest scenario: $\chi=$ photon, i.e. di-photon resonance.
- current searches allow single production with reasonable cross section:

- the simplest scenario: $\chi=$ photon, i.e. di-photon resonance.
- current searches allow single production with reasonable cross section:

$$
\sigma(h S \rightarrow h \gamma \gamma) \sim 10 \mathrm{fb} \times \rho
$$

kinematic features of $h \gamma \gamma$

- S and Higgs boson at 13 TeV would be produced near threshold,
- photons from S would be energetic:

$$
p_{T, p e a k} \sim M / 2
$$

- photons close to back-to-back, \boldsymbol{b}-jets close to back-to-back $(\Delta R \sim \pi)$.

kinematic features of $h \gamma \gamma$

- S can be resonant (i.e. near on-shell) either in s-channel or decay:

[Carmona, Goertz, AP, 1606.02716]
$M_{h \gamma \gamma}[\mathrm{GeV}]$
- construct two analysis "regions": "three-body decay", "on-shell $\gamma \gamma$ ".
- given assumption that "underlying" production is purely gluon fusion and $\lambda_{H S}=1$,
- calculate 95% C.L. exclusion for resonance produced in mixture of gluon fusion and b-quark fusion:

$$
\begin{gathered}
M=600 \mathrm{GeV} \\
\Gamma=1 \mathrm{GeV}
\end{gathered}
$$

green: "on-shell
$\gamma \gamma^{\prime \prime}$
red: "three-body decay"
[Carmona, Goertz, $\underline{\text { AP }}$ 1606.02716]

conclusions

- multi-Scalar final states possess rich phenomenology allow us to probe couplings between scalars [+ other couplings].
- Higgs boson multi-production has received considerable attention since Higgs discovery:
- higher-order corrections, BSM effects, experimental measurements + more.
- indirect constraints on the trilinear Higgs boson coupling will provide complementary information.
- Higgs-New scalar associated production has interesting kinematic features and would be necessary to consider if new states are discovered.

Thanks for your attention!

backup slides

branching ratios for $h h$ and

 hhh
branching ratios $\left(m_{h}=125 \mathrm{GeV}\right)$

$$
\begin{aligned}
& B R[b \bar{b} b \bar{b}]=33.3 \% \\
& B R[b \bar{b} W W]=24.8 \% \\
& B R[b \bar{b} \tau \tau]=7.29 \% \\
& B R[W W W W]=4.62 \% \\
& B R[W W \tau \tau]=2.71 \% \\
& B R[\tau \tau \tau \tau]=0.399 \% \\
& B R[b \bar{b} Z Z]=0.305 \% \\
& B R[b \bar{b} \gamma \gamma]=0.263 \% \\
& B R[b \bar{b} Z \gamma]=0.178 \% \\
& B R[b \bar{b} \mu \mu]=0.025 \%
\end{aligned}
$$

note: each 1\% corresponds to
~100 events per $300 \mathrm{fb}^{-1}$ of luminosity @ LHC14.

branching ratios $\left(m_{h}=125 \mathrm{GeV}\right)$

$$
\begin{aligned}
& B R[b \bar{b} b \bar{b}]=33.3 \% \\
& B R[b \bar{b} W W]=24.8 \% \\
& B R[b \bar{b} \tau \tau]=7.29 \% \\
& B R[W W W W]=4.62 \% \\
& B R[W W \tau \tau]=2.71 \% \\
& B R[\tau \tau \tau \tau]=0.399 \% \\
& B R[b \bar{b} Z Z]=0.305 \% \\
& B R[b \bar{b} \gamma \gamma]=0.263 \% \\
& B R[b \bar{b} Z \gamma]=0.178 \% \\
& B R[b \bar{b} \mu \mu]=0.025 \%
\end{aligned}
$$

note: each 1\% corresponds to
~100 events per $300 \mathrm{fb}^{-1}$ of luminosity @ LHC14.

branching ratios $\left(m_{h}=125 \mathrm{GeV}\right)$

$$
\begin{aligned}
& B R[b \bar{b} b \bar{b}]=33.3 \% \\
& B R[b \bar{b} W W]=24.8 \% \\
& B R[b \bar{b} \tau \tau]=7.29 \% \\
& B R[W W W W]=4.62 \% ? \\
& B R[W W \tau \tau]=2.71 \% ? \\
& B R[\tau \tau \tau \tau]=0.399 \% ? \\
& B R[b \bar{b} Z Z]=0.305 \% \\
& B R[b \bar{b} \gamma \gamma]=0.263 \% \\
& B R[b \bar{b} Z \gamma]=0.178 \% \\
& B R[b \bar{b} \mu \mu]=0.025 \%
\end{aligned}
$$

note: each 1\% corresponds to
~100 events per $300 \mathrm{fb}^{-1}$ of luminosity @ LHC14.

branching ratios $\left(m_{h}=125 \mathrm{GeV}\right)$

$$
\begin{aligned}
& B R[b \bar{b} b \bar{b}]=33.3 \% \\
& B R[b \bar{b} W W]=24.8 \% \\
& B R[b \bar{b} \tau \tau]=7.29 \% \\
& B R[W W W W]=4.62 \% \text { ? } \\
& B R[W W \tau \tau]=2.71 \% \\
& B R[\tau \tau \tau \tau]=0.399 \% \text {, } \\
& B R[b \bar{b} Z Z]=0.305 \% \\
& B R[b \bar{b} \gamma \gamma]=0.263 \% \\
& B R[b \bar{b} Z \gamma]=0.178 \% \\
& B R[b \bar{b} \mu \mu]=0.025 \% \\
& \text { note: each 1\% corresponds to } \\
& \text { ~100 events per } 300 \mathrm{fb}^{-1} \text { of } \\
& \text { luminosity @ LHC14. } \\
& \text { shown to be } \\
& \text { potentially viable (in } \\
& \text { the SM) }
\end{aligned}
$$

$\boldsymbol{h} \boldsymbol{h} \boldsymbol{h}$ branching ratios ($\mathrm{m}_{\mathrm{h}}=125 \mathrm{GeV}$)

$h h h \rightarrow$ final state	BR (\%)	$\sigma(\mathrm{ab})$	$N_{30 \mathrm{ab}-1}$
$(b b)(b b)(b b)$	19.21	1110.338	33310
$(b \bar{b})(b \bar{b})\left(W W_{1 \ell}\right)$	7.204	416.41	12492
$(b \bar{b})(b \bar{b})(\tau \bar{\tau})$	6.312	364.853	10945
$(b \bar{b})(\tau \bar{\tau})\left(W W_{1 \ell}\right)$	1.578	91.22	2736
$(b \bar{b})(b \bar{b})\left(W W_{2 \ell}\right)$	0.976	56.417	1692
$(b \bar{b})\left(W W_{1 \ell}\right)\left(W W_{1 \ell}\right)$	0.901	52.055	1561
$(b \bar{b})(\tau \bar{\tau})(\tau \bar{\tau})$	0.691	39.963	1198
$(b \bar{b})(b \bar{b})\left(Z Z_{2 \ell}\right)$	0.331	19.131	573
$(b \bar{b})\left(W W_{2 \ell}\right)\left(W W_{1 \ell}\right)$	0.244	14.105	423
$(b \bar{b})(b \bar{b})(\gamma \gamma)$	0.228	13.162	394
$(b \bar{b})(\tau \bar{\tau})\left(W W_{2 \ell}\right)$	0.214	12.359	370
$(\tau \bar{\tau})\left(W W_{1 \ell}\right)\left(W W_{1 \ell}\right)$	0.099	5.702	171
$(\tau \bar{\tau})(\tau \bar{\tau})\left(W W_{1 \ell}\right)$	0.086	4.996	149
$(b \bar{b})\left(Z Z_{2 \ell}\right)\left(W W_{1 \ell}\right)$	0.083	4.783	143
$(b \bar{b})(\tau \bar{\tau})\left(Z Z_{2 \ell}\right)$	0.073	4.191	125
$(b \bar{b})(\gamma \gamma)\left(W W_{1 \ell}\right)$	0.057	3.291	98
$(b \bar{b})(\tau \bar{\tau})(\gamma \gamma)$	0.05	2.883	86
$\left(W W W_{1}\right)\left(W W_{1 \ell}\right)\left(W W_{1 \ell}\right)$	0.038	2.169	65
$(\tau \bar{\tau})\left(W W_{2 \ell}\right)\left(W W_{1 \ell}\right)$	0.027	1.545	46
$(\tau \bar{\tau})(\tau \bar{\tau})(\tau \bar{\tau})$	0.025	1.459	43
$(b \bar{b})\left(W W_{2 \ell)}\right)\left(W W_{2 \ell}\right)$	0.017	0.956	28
$\left(W W_{2 \ell}\right)\left(W W_{1 \ell}\right)\left(W W_{1 \ell}\right)$	0.015	0.882	26
$(b \bar{b})(b \bar{b})\left(Z Z_{4 \ell)}\right.$	0.012	0.69	20
$(\tau \bar{\tau})(\tau \bar{\tau})\left(W W_{2 \ell}\right)$	0.012	0.677	20
$(b \bar{b})\left(Z Z_{2 \ell}\right)\left(W W_{2 \ell}\right)$	0.011	0.648	19
$(\tau \bar{\tau})\left(Z Z_{2 \ell}\right)\left(W W_{1 \ell}\right)$	0.009	0.524	15
$(b \bar{b})(\gamma \gamma)\left(W W_{2 \ell}\right)$	0.008	0.446	13
$(\tau \bar{\tau})(\gamma \gamma)\left(W W_{1 \ell}\right)$	0.006	0.36	10

indirect constraints in e+e-

- e.g. contributions to single Higgs observables through higherorder corrections.
- e.g. e+e- @ 240 GeV :

[M. McCullough, 1312.3322]

FIG. 1: NLO vertex corrections to the associated production cross section which depend on the Higgs self-coupling. These terms lead to a linear dependence on modifications of the selfcoupling δ_{h}.

- may determine triple Higgs coupling within $\sim 30 \%$ at 10/ab.

other production modes?

- several associated production modes exist: cross section@14 TeV

$$
\begin{aligned}
q q & \rightarrow q q H H & \sim 1.8 \mathrm{fb} \\
q q & \rightarrow W H H & \sim 0.4 \mathrm{fb} \\
q q & \rightarrow Z H H & \sim 0.3 \mathrm{fb}
\end{aligned}
$$

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira [1212.5581]

- (note: behaviour w.r.t. λ is different for each channel.)
- with decays $H H \rightarrow b \bar{b} b \bar{b}$, could be looked into with sub-structure techniques, but initial cross section low.

the failure of HEFT in $\boldsymbol{h} \boldsymbol{h}$

how good is the HT-EFT?

 [Grigo, Hoff, Melnikov, Steinhauser, 1305.7340] $\longrightarrow \begin{aligned} & \text { corrections to } \\ & \text { NLO } \boldsymbol{\sigma} \text { up to } \mathcal{O}\left(1 / M_{t}^{8}\right)\end{aligned}$
$\sqrt{s_{\text {cut }}}$: upper cut partonic c.o.m. energy.
black: variations of the self-coupling by

$$
\pm 20 \%
$$

violet: uncertainty due to un-calculated $1 / M_{t}$ corrections.
$\longrightarrow \mathcal{O}(10 \%)$

how bad is the HT-EFT?

 [Grigo, Hoff, Melnikov, Steinhauser, 1305.7340]corrections to
NLO $\boldsymbol{\sigma}$ up to $\mathcal{O}\left(1 / M_{t}^{8}\right)$

$\sqrt{s_{\mathrm{cut}}}$: upper cut partonic c.o.m. energy.
black: variations of the self-coupling by

$$
\pm 20 \%
$$

violet: uncertainty due to un-calculated $1 / M_{t}$ corrections.
$\longrightarrow \mathcal{O}(10 \%)$

HEFT gone wild

- differential quantities can be worse in certain regions of phase space, e.g.:

$$
p p \rightarrow h h+j+X
$$

[Dolan, Englert, Spannowsky 1206.5001]

Merging and matching for $h h$

merging via MLM

[Q. Li, Q. Yan, X. Zhao, 1312.3830]
[P. Maierhöfer, AP, 1401.0007]

- supplement the parton shower (PS) (soft/collinear QCD radiation) with exact matrix elements (MEs).
- use a merging scheme to put PS and MEs together, avoiding double-counting.
- MLM method "matches" jets to partons according to a "merging" scale and vetoes accordingly.

Nigher

hh merging via MLM
 [Li, Yan, Zhao, 1312.3830]
 [P. Maierhöfer, AP, 1401.0007]

- implementation using MadGraph+Pythia, ie. Li, Q. Yan, X. Zhao, 1312.3830]
- our implementation: using OpenLoops generator: evaluates one-loop MEs efficiently using numerical

- kinematical description of the first jet at high- p_{T} : via exact ME for hh+1 parton.
- MLM merging performed in Herwig++.

Niknef

merging via MLM

[P. Maierhöfer, $\underline{\text { AP 1401.0007] }}$

- scale uncertainty reduction: from leading-log in PS to LO in ME for the first jet p_{T}.
- e.g. transverse momentum of Higgs boson pair.
- red: parton shower, blue: merged sample.

matching using MC@NLO

[R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou, M. Zaro, 1401.7340]

- use exact LO and real emission MEs ($h \boldsymbol{h}+1$ parton) as was done with merging.
- use the "two-loop" virtual corrections as obtained using the low energy theorem ($M_{t} \rightarrow \infty$), reweight according to exact LO.
- match via MC@NLO method: removes the doublecounting resulting from combination of $\mathrm{hh}+\mathrm{PS}$ and $\mathrm{hh}+1$ parton ME.

matching using MC@NLO

[R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P.
Torrielli, E. Vryonidou, M. Zaro, 1401.7340]

- other hh production processes also included in the aMC@NLO framework:

sensitivity to the triple coupling

triple coupling sensitivity

[Dolan, Englert, Spannowsky, 1206.5001]

sensitivity lies in the low- p_{T} region.

what about new physics effects in $\mathbf{h h}$?

new particles

- $\boldsymbol{h} \boldsymbol{h}$ can probe the presence of new particles:
- (a) e.g. in the loops:

- (b) e.g. in a propagator coupling to two Higgs bosons:

(a): e.g. particles in loops

- e.g. real scalar colour-octet, coupling to the SM Higgs via:

$$
S_{a}^{2} \Phi^{\dagger} \Phi \quad \text { [e.g. Kribs, Martin, 1207.4496] }
$$

- e.g. top partners:

SM third gen.:
$q_{L}=\left(t_{L}, b_{L}\right)$
t_{R}, b_{R}
[e.g. Chen, Dawson, Lewis, 1406.3349]
heavy fermions:
$Q=(T, B)$ vector-like $\mathrm{SU}(2)_{\mathrm{L}}$ doublet
U, D vector-like $\mathrm{SU}(2)_{\mathrm{L}}$ singlets
[left- and right- handed components have identical transformation properties under $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)$]

(b): e.g. Higgs portal scenario

[e.g. (di-Higgs): Dolan, Englert, Spannowsky,1210.8166, e.g. (general) Barbieri, Gregoire, Hall, hep-ph / 0509242]

$$
\begin{aligned}
V & =\mu_{S}^{2}\left|\Phi_{S}\right|^{2}+\lambda_{S}\left|\Phi_{S}\right|^{4}+\mu_{H}^{2}\left|\Phi_{H}\right|^{2}+\lambda_{H}\left|\Phi_{H}\right|^{4} \\
& +\eta_{\chi}\left|\Phi_{S}\right|^{2}\left|\Phi_{H}\right|^{2} \quad[\text { "mirrored"] }
\end{aligned}
$$

$\left|\Phi_{S}\right|:$ SM Higgs doublet $\quad\left|\Phi_{H}\right|:$ Hidden sector doublet

(b): e.g. Higgs portal scenario

[e.g. (di-Higgs): Dolan, Englert, Spannowsky,1210.8166, e.g. (general) Barbieri, Gregoire, Hall, hep-ph / 0509242]

$$
\begin{aligned}
V & =\mu_{S}^{2}\left|\Phi_{S}\right|^{2}+\lambda_{S}\left|\Phi_{S}\right|^{4}+\mu_{H}^{2}\left|\Phi_{H}\right|^{2}+\lambda_{H}\left|\Phi_{H}\right|^{4} \\
& +\eta_{\chi}\left|\Phi_{S}\right|^{2}\left|\Phi_{H}\right|^{2} \quad[\text { "mirrored"] } \\
& \left|\Phi_{S}\right| \text { : SM Higgs doublet } \quad\left|\Phi_{H}\right|: \text { Hidden sector doublet }
\end{aligned}
$$

- after EWSB: $\left|\Phi_{S, H}\right|=v_{S, H} / \sqrt{2}$
one gets two Higgs scalars: \mathbf{h}, \mathbf{H}.
and couplings: hhh, HHH, hHH, hhH.
\Rightarrow get: $p p \rightarrow h h, h H, H H$

(b): e.g. Higgs portal scenario

[Dolan, Englert, Spannowsky, 1210.8166]

- example parameter point:

$$
\begin{aligned}
v_{S} & \simeq 246 \mathrm{GeV} \\
v_{H} & \simeq 24 \mathrm{GeV}
\end{aligned}
$$

- leads to (LO):

$$
\begin{array}{rcc}
p p \rightarrow h h+X & : 44.4 \mathrm{fb} & \\
p p \rightarrow H h+X & : 5.57 \mathrm{fb} & \text { [NLO K-factor ~ 2] } \\
p p \rightarrow H H+X & : & 667 \mathrm{ab}
\end{array}
$$

- constrain the model by measuring the above.
- [note: phenomenology similar in the MSSM.]

