Introduction to Multi Purpose Detectors

M. Gabriel **IMPRS Colloquium** 2nd December 2016

Outline:

1. Accelerator Environment

- 2. Higgs Interaction
- 3. Multi Purpose Detectors
- 4. Summary & Conclusion

Accelerator Environment: Large Hadron Collider (pp-collider)

Machine parameters:

- 14 TeV center of mass energy
- ~ 10¹¹ protons/bunch
- ~ 2000 bunches/ring

Collision parameters:

- 25 ns (40 MHz) between bunch collisions
- ~ 10⁹ pp collisions/s & 20 30 pp-interactions/beam crossing

Physics impact:

- very high QCD background/low signal
- multiple collision/bunch crossing => disentangle hits, tracks & signals
- triggering is crucial aspect for filtering interesting events
- high event rate needs high read out rate and leads to huge amounts of data

More Information about data handling by Ludo: Making use of experimental data: computing and analysis

Accelerator Environment: Compact Linear Collider (e+e-)

CLIC machine parameters:

- staged build process 380 GeV, 1000 TeV & 3 TeV center of mass energy
- ~ 10^9 electrons/bunch
- ~ 312 bunches/bunch train

Collision parameters:

- 0.5 ns (~ 2 GHz) between bunch collisions & 20 ms between bunch trains
- high luminosity requires narrow focusing at IP nano meter beam sizes

Physics impact:

- focusing leads to beam-beam-interaction (Beamstrahlung) - spread & long tail in electron energy distribution/photon emission
- e+e- background from photons
- $\gamma \gamma$ ->hadrons background ~ 3.2 events/bx

Example Measurement: Higgs Production

Gluon fusion

pp-colliders:

• gluon fusion dominant production at $\sqrt{s} = 14$ TeV

Higgs Radiation e⁺ June 1 and 1 Η **e**⁻

e⁺e⁻ -colliders:

- Higgs radiation dominant √s < ~ 350 GeV
- Vector boson fusion dominant $\sqrt{s} > \sim 350$ GeV

Example production: $e^+e^- ->ZH$

Example Measurement: Higgs & Z Decay

The branching ratios for the main decays of the SM Higgs boson near mH = 125GeV. Source: PDG 2015

Higgs decay:

- many different decay modes
- background given by accelerator & physics
- H->bb in pp-collider totally
 - background dominated -
 - irreducible bkg
 - decay mode under investigation
 - drives detector design

Z decay:

- ~ 70% into hadrons
- ~ 10% into leptons

Example decay: e⁺e⁻>ZH->bb + l⁺l⁻

Modern Multipurpose Detectors

Modern multi propose detectors:

- broad spectrum of measurements
- ideally perform all measurement in the best way
- all build in the more or less the same way
 - onion shapped
 - strong magnetic field
 - 4π coverage
- some examples:
 - A Toroidal LHC ApparatuS
 (ATLAS)
 - Compact Muon Solenoid (CMS)
 - CLIC Silicon Detector (SID) proposed CLIC detector

Focus on SiD!

CLIC Silicon Large Detector (SiD)

Vertex detector: r = 27 - 77 mm

Main tracker: r = 230 - 1200 mm

Electromagnetic calorimeter: r = 1.3m - 1.43m

Hadronic calorimeter: r = 1.45 - 2.6m

Superconducting magnet: r = 2.75 - 3.7 m

Return yoke & muon chambers: r = 3.9 - 7 m

Particle Tracking: Momentum Measurement in B-Fields

Charged particles are deflected in magnetic fields:

- radius of deflection measurements: $p_T[GeV/c] = 0.3 B[T] R[m]$
- in reality only bent track segments:

$$s = \frac{0.3BL^2}{8p_T}$$

M. Gabriel - <u>mgabriel@mpp.mpg.de</u>

Errors on the momentum resolution:

• overall error on momentum:

$$\left(\frac{\sigma_{p_T}}{p_T}\right)^2 = \left(\frac{\sigma_{ms}}{p}\right)^2 + \left(\frac{\sigma_{meas.}}{p_T}\right)^2$$

measurement contribution:

$$\frac{\sigma_{meas.}}{p_T} \propto \sqrt{\frac{720}{N+4}} \cdot \frac{\sigma_x p_T}{BL^2}$$

multi scattering contribution:

$$\frac{\sigma_{ms}}{p} \propto \left(\frac{1}{B\sqrt{LX_0}}\right)$$

Particle Tracking: Detector Systems

Vertex detector:

- identification of secondary vertices b and c-tagging
- highest resolution close as possible to IP
- 3 or so layers of pixel

Main tracker:

- measure particle tracks
- 5 silicon strip layers •

Detector concepts:

- measure position in space/track in magnetic field
- minimise influence on particles low material budget requiered
- measurement of all charged particles (e, μ , τ , p, π)

Common technologies for tracking detectors:

- gas detectors many space points but drift time/ pile up problem
 - drift tubes ~ 50 to 150 μ m
 - Time Projection Chamber (TPC)
- silicon detectors fast, very good spatial resolution but few space points expensive
 - silicon stripes ~ 20 30 μm
 - silicon pixel ~ 5-15 µm

More Information about tracking detectors by Julien: **ATLAS Inner Detector**

Calorimetry: Basic Idea

M. Gabriel - <u>mgabriel@mpp.mpg.de</u>

Detector concept:

- measure energy of elementary particles by total absorption - destructive measurement
- convert single high energy particle into multiple low energy particles - shower development
- convert particle energy to detector response
- measurement ~ constant over 4π
- measurement of all particles (except muons neutrinos) - total energy
- reconstruct missing energy & neutrinos by momentum conservation

Calorimetery: Detector Systems

Ε

Electromagnetic Calorimeter (ECal):

- measure photon and lepton energy identify photons • Radiation Length X₀: mean distance after which highly relativistic electron has lost all but 1/e of it's energy due to Bremsstrahlung
- relatively good energy resolution • Hadronic Calorimeter (HCal):
- measure strongly interacting particles identify neutral hadrons
- Nuclear Interaction Length λ_{int} : mean path length after which
- the probability of not having been in strong interaction is 1/e relatively bad energy resolution - weak spot in overall • detector

σ(E)/E

More Information about calorimeters by Yasmine & Christian:

- **Basic Concepts of Calorimetry**
- Advanced Techniques in Calorimetry

Magnet & Muon System

Magnet system:

- has to accommodate tracker and calorimeters
- major cost driver for larger radii
- usually superconducting coils
 - SiD: 5 T solenoid
 - CMS: 4 T solenoid
 - ATLAS: 2 T super conducting solenoid +

0.5 T normal conducting toroidal **Iron return yoke:**

- return magnetic field lines **Muon systems:**
- interleaved inside the return yoke
- for example RPCs or big scintillators
- identification and measurement of muons
- detect shower leakage

Analysis Summary & Conclusion

Example measurement:

- Higgs production in Higgs radiation
- Higgs decay into bb-pair
- Z decay into two leptons e or μ

Vertex & main tracker:

- measurement of particle tracks in magnetic field
- identification of b hadron by secondary vertices •
- determination of lepton & charged hadron momentum • ECal & HCal:
- measurement of all particle energies (except muon)
- reconstruct missing energy
- measure bb-pair energy

Magnet and muon system:

- outer most part of the detector •
- supply magnetic field
- identify muons

All systems in a modern Multi Purpose Detector work together - all are needed for the full picture!

Backup

M. Gabriel - <u>mgabriel@mpp.mpg.de</u>