Basic Concepts of Calorimetry

Yasmine Israeli

Yasmine Israeli

Outline

- What is a calorimeter
- Different particle showers
- Calorimeter types
- Problem in detecting an hadron
- Why hadronic and EM calorimeters
- Energy reconstruction
- Energy resolution
- Detection in the calorimetry system

IMPRS Colloquium, December 2016

What is a Calorimeter?

Calorimeter measures the energy of an incoming particle.

- Stops (absorbs) the particle by generating showers.
- Converts particle's (shower's) energy into something **detectable** (like photons, charge).

What is a Calorimeter?

Calorimeter measures the energy of an incoming particle.

- Stops (absorbs) the particle by generating showers.
- Converts particle's (shower's) energy into something **detectable** (like photons, charge).

 Detects more stable particles e[±], γ, π[±], π⁰, K[±], K⁰, p[±], n (μ[±] don't induce showers)

What is a Calorimeter?

Calorimeter measures the energy of an incoming particle.

- Stops (absorbs) the particle by generating showers.
- Converts particle's (shower's) energy into something **detectable** (like photons, charge).

 Detects more stable particles e[±], γ, π[±], π⁰, K[±], K⁰, p[±], n (μ[±] don't induce showers)

"Ideal" calorimeter: Calorimeter signal \propto deposited energy \propto energy of primary particle

Particle Showers

- a high-energy particle interacting with dense matter.
- secondary particles are produced

- each secondary particle interacts with the same dense matter and produces more particles
- This process continues → the particle number is growing as long as the energy of the "secondaries" is sufficient to create new particles

Particle Showers

Shower length scales:

- EM Shower: Radiation length X₀
- Had. Shower: Interaction length λ_{Int}

Simplified Model:

• 1 Step = $X_0 \Rightarrow$ 2 new particles

• t Steps = $t \cdot X_0 \Rightarrow 2^t$ particles, with $E = E_0 2^{-t}$ (E_0 energy of initial particle)

• t_{max} steps = shower maximum, $E = \epsilon_c$

$$t_{max} = \log_2(\frac{E_0}{\epsilon_c}) \Rightarrow \text{logarithmic increase of shower depth with } E_0$$

Yasmine Israeli

EM Showers

Origin: energtic e^- , e^+ or γ interacts with dense matter $\rightarrow e^-$, e^+ , γ

Hadronic Showers

Origin: $\pi^{\pm}, K^{\pm}, K^{0}, p^{\pm}$ or *n* entering dense matter \rightarrow strong interaction!

- excitation of nuclei
- production of hadrons and mesons
- nuclear fission
- EM sub-shower: natural measons $(\pi^0, \eta) \rightarrow$ photons

*pair production *photo-electric effect *Bremsstrahlung *ionization

Yasmine Israeli

Calorimeter Types:

Calorimeter { Absorbs the particle by generating shower \leftrightarrow Absorber Converts particle's energy into something detectable \leftrightarrow Detector

Calorimeter Types:

Calorimeter { Absorbs the particle by generating shower↔ Absorber Converts particle's energy into something detectable↔ Detector

Homogeneous Calorimeter

Absorber+detector in one medium

- Dense scintillating crystals
- lead loaded glass (Cerenkov light)
- Noble gas liquids

Read-out

- \star Mostly based on light detection:
 - Photomultiplier
 - Avalanche Photo-Diodes
 - Silicon-Photo-multipliers
 - Cherenkov detectors
- $\star \mathsf{Always}$ at the end

Calorimeter Types: Sampling Calorimeter

Absorber and detector are separated \Rightarrow flexible and compact design

Passive Layers:

- Generate the shower
- High density, high atomic number
 - iron, lead, uranium

Active layers:

- Record the particle within the shower
- Different technologies can be applied
 - Plastic scintillators+ photo-detectors
 - Silicon detectors
 - Noble liquid ionization chambers
 - Gas detectors

W. Lucha, M. Regler, Elementarteilchenphysik

Yasmine Israeli

Homogenous vs Sampling

Homogenous Calorimeters:

- Good energy resolution for EM showers
- Very non-linear for hadrons
- Limited granularity
- Crystals are expensive
- no direct information on shower development

Sampling Calorimeters:

- Compact
- Flexible design
- Can be cheap
- Energy resolution is limited by sampling fluctuations
 - → The fractions of how much is energy is deposited in the absorber and in the detector varies from event to event

Calorimeter:

- Stops (absorbs) the particle by generating **showers**.
- Converts particle's shower's energy into something detectable
- Our detectors detect: Charge or Photons

Calorimeter:

- Stops (absorbs) the particle by generating showers.
- Converts particle's shower's energy into something detectable
- Our detectors detect: Charge or Photons

Calorimeter:

- Stops (absorbs) the particle by generating showers.
- Converts particle's shower's energy into something detectable
- Our detectors detect: Charge or Photons

In hadronic shower: invisible energy!!

- nuclear binding energy
- slow neutrons
- neutrinos
- The fraction of invisible energy varies
- The fraction of the electromagnetic sub-shower varies

Calorimeter:

- Stops (absorbs) the particle by generating showers.
- Converts particle's shower's energy into something detectable
- Our detectors detect: Charge or Photons

In EM shower: e^- , e^+ or γ produces more e^- , e^+ , γ

In hadronic shower: invisible energy!!

- nuclear binding energy
- slow neutrons
- neutrinos
- The fraction of invisible energy varies
- The fraction of the electromagnetic sub-shower varies

EM Showers:

- $\mbox{-}e^{\scriptscriptstyle\pm},\gamma$ production
- -EM shower size \propto to radiation length X_0

Hadronic Showers:

- -Hadrons, mesons, baryons production.
- -EM sub-shower: e^{\pm} , γ production
- -Had. shower size \propto interaction length λ_{Int}

EM Showers:

- $\mbox{-}e^{\scriptscriptstyle\pm},\gamma$ production
- -EM shower size \propto to radiation length X_0

Hadronic Showers:

- -Hadrons, mesons, baryons production.
- -EM sub-shower: e^{\pm}, γ production
- -Had. shower size $\propto \!$ interaction length λ_{Int}

$$X_0 < \lambda_{Int}$$

 \Rightarrow EM showers are more compact!

EM Showers:

- $\mbox{-}e^{\scriptscriptstyle\pm},\gamma$ production
- -EM shower size \propto to radiation length X_0

Hadronic Showers:

- -Hadrons, mesons, baryons production.
- -EM sub-shower: e^{\pm}, γ production
- -Had. shower size $\propto interaction$ length λ_{Int}

$$X_0 < \lambda_{Int}$$

 \Rightarrow EM showers are more compact!

EM shower* usually:

- Starts before Had. shower.
- Every "generation" in the shower happens in a smaller scale.
- The shower ends before the Had. shower
- * also the EM sub-shower in the Had. shower

A small EM calorimeter before Had. calorimeter

- Using two different technologies
 ⇒can use homogeneous calorimeter for Ecal (EM calorimeter).
- Optimizing Ecal for EM showers (including the EM sub-shower)
- Optimizing Hcal (hadronic calorimeter) for Had. showers
- Different granularity (cell size in the detector) is needed
- Cheaper
- Improving the energy resolution

Yasmine Israeli

Standard Energy Reconstruction:

For each event:

- Collect all the signal's energy from Ecal : $E_{total}^{Ecal} = \sum_{All \ signals}^{ECal} E_{signal}$
- Collect all the signal's energy from Hcal : $E_{total}^{Hcal} = \sum_{A|l \ signals}^{HCal} E_{signal}$
- Add together, including calibration factors for each detector:

 $E_{reco}^{event} = E_{total}^{Ecal} \cdot \omega_E + E_{total}^{Hcal} \cdot \omega_H$

All events:

- Fill a histogram with "enough" events
- Determine what is E_{reco} and $\Delta E_{reco}/E_{reco}$

Energy Reconstruction in CALICE:

SiW ECAL

- Silicon sensors
- Absorber : tungsten
 Absorber : steel
- AHCAL+TCMT
 - SiPM

• Gaussian fit $\Longrightarrow \mu, \sigma$

• Energy resolution: $\frac{\sigma_{reco}}{E_{reco}}$

Energy Resolution

$$\frac{\Delta E_0}{E_0} = \frac{\sigma(E_0)}{E_0} = \frac{a}{\sqrt{E_0}} \oplus \frac{b}{E_0} \oplus c$$

Stochastic term:

Fluctuation in the number of measured particles (a simple statistical error)

Noise term:

Readout electronic noise, pile-up fluctuations

Constant term:

- * Non-uniform detector response * Channel to channel inter-calibration errors
- * Fluctuations in longitudinal energy containment
- * Energy lost in dead material, before or in detector

Summary

- We can measure particle's energy with calorimeters.
- There are many different technologies in use.
- The main challenge is detecting hadrons.
- Good energy resolution is essential for valid reconstruction.
- Calorimeter R&D is an active field.

CMS Experiment at LHC, CERN Data recorded: Wed Nov 25 12:21:51 2015 CET Run/Event: 262548 / 14582169 Lumi section: 309

Thank you for your attention!

BACKUP

Yasmine Israeli

Local Software Compensation:

Problem in detection: $\frac{e}{\pi} > 1 \Rightarrow$ Lost energy in the hadron decay.

- EM showers are denser than hadronic showers.
 → Classification of hits based on the energy density
- χ^2 minimization:

$$\chi^2 = \sum_{events} \left(\sum_{hits} E_{hit} \omega_j - E_{beam} \right)^2$$

j=Energy density index

Yasmine Israeli