Basic Concepts of Calorimetry

Yasmine lsraeli

Yasmine Israeli IMPRS Colloquium, December 2016



Outline

e What is a calorimeter

e Different particle showers

o Calorimeter types

e Problem in detecting an hadron

e Why hadronic and EM calorimeters
e Energy reconstruction

e Energy resolution

e Detection in the calorimetry system

Yasmine Israeli IMPRS Colloquium, December2016



What is a Calorimeter?

Calorimeter measures the energy of an incoming particle.

e Stops (absorbs) the particle by generating showers.

o Converts particle’s (shower’s) energy into something detectable
(like photons, charge).

[5.Menke]
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o Detects more stable particles e*,~, 7%, 7%, K*, K°, p*, n
(p* don’t induce showers)
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What is a Calorimeter?

Calorimeter measures the energy of an incoming particle.

e Stops (absorbs) the particle by generating showers.
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(like photons, charge).

[5.Menke]

o Detects more stable particles e*,~, 7%, 7%, K*, K°, p*, n
(p* don’t induce showers)

"ldeal” calorimeter:
Calorimeter signal o deposited energy o energy of primary particle
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Particle Showers

e a high-energy particle interacting with dense matter.

e secondary particles are produced
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e each secondary particle interacts with the same dense matter and
produces more particles

e This process continues — the particle number is growing as long as the
energy of the "secondaries” is sufficient to create new particles
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Particle Showers

Shower length scales:
e EM Shower: Radiation length Xo
e Had. Shower: Interaction length A
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Simplified Model:

e 1 Step = Xo = 2 new particles
o t Steps = t-Xo = 2 particles,with E = Eg2™" (£ energy of initial particle)

o tmax Steps = shower maximum, E = e,
Eo . o .
tmax = log,(—) =>logarithmic increase of shower depth with Eo
€c
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EM Showers

Origin: energtic e ,e" or v interacts with dense matter — ¢~ ,e”,y
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Hadronic Showers

Origin: 7%, K*, K°, p* or n entering dense matter — strong interaction!
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e spallation

e excitation of nuclei

e production of hadrons and mesons

e nuclear fission

e EM sub-shower: natural measons (770,77) —photons

«pair production *photo-electric effect *Bremsstrahlung *ionization
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Calorimeter Types:

Absorbs the particle by generating shower<> Absorber

Calorimeter . . .
Converts particle’s energy into something detectable<> Detector
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Calorimeter Types:

Absorbs the particle by generating shower<> Absorber

Calorimeter . . .
Converts particle’s energy into something detectable<> Detector

Homogenous Calorimeter

e Absorber+detector in one medium

e Measures the complete energy deposit

Sampling Calorimeter

e Absorber and detector are separated

e Showers develop in passive layers

o Particles are detected in active layers
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Homogeneous Calorimeter

Absorber+detector in one medium

o Dense scintillating crystals -

o lead loaded glass (Cerenkov light)

e Noble gas liquids

Read-out

+Mostly based on light detection:

Photomultiplier
e Avalanche Photo-Diodes
o Silicon-Photo-multipliers

e Cherenkov detectors

*Always at the end
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Calorimeter Types: Sampling Calorimeter

Scintillator plates
Absorber Scintillator

Light guide

Absorber and detector are separated
=>flexible and compact design

Photomultiplier

Passive Layers:
Liquid noble gas
e Generate the shower Chargo ampifier
Absorber and
electrodes

e High density, high atomic number

» iron, lead, uranium ‘ e
4
quuldArgon". o) )

Active layers:

High voltage
A

e Record the particle within the shower

o Different technologies can be applied

Multi Wire Proportional
Chamber

» Plastic scintillators+ photo-detectors
» Silicon detectors

» Noble liquid ionization chambers

» Gas detectors

. Analogue signal

W. Lucha, M. Regler, Elementarteilchenphysik
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Homogenous vs Sampling

Homogenous Calorimeters:

Good energy resolution for EM showers
Very non-linear for hadrons

Limited granularity

Crystals are expensive

no direct information on shower development

Sampling Calorimeters:

Compact
Flexible design
Can be cheap

Energy resolution is limited by sampling fluctuations
— The fractions of how much is energy is deposited in the
absorber and in the detector varies from event to event
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Problem: Detecting an Hadron

Calorimeter:
o Stops (absorbs) the particle by generating showers.
o Converts particle's shower’s energy into something detectable

e Our detectors detect: Charge or Photons
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Problem: Detecting an Hadron
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o Stops (absorbs) the particle by generating showers.
o Converts particle's shower’s energy into something detectable
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In hadronic shower: invisible energy!!
e nuclear binding energy
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- The fraction of the electromagnetic sub-shower varies
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Problem: Detecting an Hadron

Calorimeter:
o Stops (absorbs) the particle by generating showers.
o Converts particle's shower’s energy into something detectable

e Our detectors detect: Charge or Photons

In EM shower: e”,e" or v produces more e”, e*, v OISIS)

In hadronic shower: invisible energy!!

e nuclear binding energy
e slow neutrons @
e neutrinos

- The fraction of invisible energy varies

- The fraction of the electromagnetic sub-shower varies

e detection
T detection
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Had. and EM Calorimeters?!

EM Showers:
-e*,~ production
-EM shower size o to radiation length Xy

Hadronic Showers:

-Hadrons, mesons, baryons production.
-EM sub-shower:e*,y production

-Had. shower size ocinteraction length Ay,
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Had. and EM Calorimeters?!

EM Showers:
-e*,~ production
-EM shower size o to radiation length Xy

Hadronic Showers:

-Hadrons, mesons, baryons production.
-EM sub-shower:e*,y production

-Had. shower size ocinteraction length Ay,

XO < AInt

= EM showers are more compact!

EM shower* usually:
o Starts before Had. shower.
e Every "generation” in the shower happens in a smaller scale.
e The shower ends before the Had. shower

* also the EM sub-shower in the Had. shower
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Had. and EM Calorimeters?!

A small EM calorimeter before Had. calorimeter

e Using two different technologies
—can use homogeneous calorimeter for Ecal (EM calorimeter).

e Optimizing Ecal for EM showers (including the EM sub-shower)
e Optimizing Hcal (hadronic calorimeter) for Had. showers

o Different granularity (cell size in the detector) is needed

e Cheaper

e Improving the energy resolution

T
n

—— iection

—— Charged Hadron (eg, Plor)

= = = - Neutrol Hadon (e Neut
Photon

Tansvens e " oo chnbess il
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Standard Energy Reconstruction:

For each event:

ECal
o Collect all the signal’s energy from Ecal : EESY = > Edignal
All signals
Heal HCal
o Collect all the signal’s energy from Hcal : E; )55 = Z Esignal
All signals

e Add together, including calibration factors for each detector:

event Ecal Hcal
Ereco = Etotal CWE + Etotal *WH

All events:
o Fill a histogram with "enough” events

o Determine what is Ejeco and AEreco/Ereco
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Energy Reconstruction in CALICE:

SiwW ECAL AHCAL+TCMT
e Silicon sensors e SiPM

e Absorber : tungsten e Absorber : steel

e Gaussian fit = pu, o
o Energy resolution: Z==
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Stochastic term:
Fluctuation in the number of measured particles (a simple statistical error)

Noise term:

AE() _ O'(E()) _ a

Energy Resolution

Ee E B = E

Readout electronic noise, pile-up fluctuations

Constant term:
* Non-uniform detector response » Channel to channel inter-calibration errors
* Fluctuations in longitudinal energy containment

= Energy lost in dead material, before or in detector
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Detection in the Calorimetry System

Hadronic calorimeter

EM Calorimeter
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Detection in the Calorimetry System

Hadronic calorimeter

EM Calorimeter

i
i
/
F
/
I
/

_J-u‘..-\-l"" 1 . -“-""H::: .

AL a
Yasmine |3raeli g i nib‘:aéﬁl_ﬁ 17




Detection in the Calorimetry System

Hadronic calorimeter

EM Calorimeter
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Detection in the Calorimetry System

Hadronic calorimeter

EM Calorimeter
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Summary

o We can measure particle’s energy with calorimeters.

e There are many different technologies in use.

e The main challenge is detecting hadrons.

e Good energy resolution is essential for valid reconstruction.

o Calorimeter R&D is an active field.
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CMS Experiment at LHC, CERN

Data recorded: Wed Nov 25 12:21:51 2015 CET
Run/Event: 262548 / 14582169

Lumi section: 309

Thank you for your attention!



BACKUP
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Local Software Compensation:
: . e .
Problem in detection: — > 1 = Lost energy in the hadron decay.
s
e EM showers are denser than hadronic showers.

— Classification of hits based on the energy density

2 .. . .
e X minimization:

2

2

X = ( > Enirwj — Ebeam)
events \ hits

j=Energy density index
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