ATLAS Inner Detector

J. Beyer – ATLAS-SCT

Max Planck Institut für Physik

02.12.2016

IMPRS Workshop

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Overview

Inner Detector

- -Pixel Detector
- -Strip Detector
- -Transition Radiation Tracker

Conclusion

ATLAS Detector

ATLAS Detector

ATLAS Inner Detector

innermost part of ATLAS ٠

Inner Detector:

- situated in a 2T solenoidal magnetic field
- barrel and disk regions ٠
 - hermetically coverage •
 - perpendicular hits •

Function:

- track reconstruction of charged particles •
- momentum reconstruction
- vertex finding / b-tagging ٠
- particle identification •

- Pixel Detector (PD/PIXEL)
 - 4 space-points
- Strip Detector (SCT) •
 - 4 space-points
- Transition Radiation Tracker (TRT)
 - 36 space-points •

ATLAS Inner Detector

innermost part of ATLAS

Inner Detector:

- situated in a 2T solenoidal magnetic field
- barrel and disk regions
 - hermetically coverage •
 - perpendicular hits •

Function:

- track reconstruction of charged particles
- momentum reconstruction
- vertex finding / b-tagging
- particle identification

- Pixel Detector (PD/PIXEL)
 - 4 space-points
- Strip Detector (SCT)
 - 4 space-points
- Transition Radiation Tracker (TRT)
 - 36 space-points ٠

ATLAS Pixel Detector

ATLAS Pixel Detector:

- originally 3 barrel layers (PIXEL)
 - Insertable B-Layer is #4
- 3 disks per side
- hybrid pixel detector modules
 - 80.4 (+24.1)M channels
 - 10 μm resolution in Rarphi and 110 (72) μm in z
 - given by pixel cell size
 - needs to cope with highest
 - track density -> high granularity
 - rate -> precise timing
- crucial for
 - impact parameter resolution
 - b-tagging

Excursion: Resolution

Necessary Resolution:

Excursion: Resolution

Necessary Resolution:

- low along the beam pipe (z)
 - straight line
- high in bended direction (R ϕ)
 - measure curvature for p_T

ATLAS Pixel Detector

ATLAS Pixel Detector:

- originally 3 barrel layers (PIXEL)
 - Insertable B-Layer is #4
- 3 disks per side
- hybrid pixel detector modules
 - 80.4 (+24.1)M channels
 - 10 μm resolution in Rarphi and 110 (72) μm in z
 - given by pixel cell size
 - needs to cope with highest
 - track density -> high granularity
 - rate -> precise timing
- crucial for
 - impact parameter resolution
 - b-tagging

ATLAS Pixel Detector

ATLAS Pixel Detector:

- originally 3 barrel layers (PIXEL)
 - Insertable B-Layer is #4
- 3 disks per side
- hybrid pixel detector modules
- 80.4 (+24.1)M channels
- 10 μ m resolution in R ϕ and 110 (72) μ m in z
 - given by pixel cell size
- needs to cope with highest
 - track density -> high granularity
 - rate -> precise timing
- crucial for
 - impact parameter resolution
 - b-tagging

Semiconductor Pixel Detector

sensor

Silicon sensor:

- n-type electrode
 - collection of electrons (fast)
- typically high purity (high resistivity) bulk material
- current ATLAS technology: n-in-n
- next generation sensor technology: p-type substrate
 - available in industry
 - potential cost reduction

Semiconductor Pixel Detector

Detection mechanism:

- apply high bias voltage in reverse direction
- E-field builds up from junction to backside
- E-field collects all free charge carriers
 - U_{bias}>U_{depl}

Semiconductor Pixel Detector

Detection mechanism:

- apply high voltage in reverse direction
- E-field builds up from junction to backside
- E-field collects all free charge carriers
 - U_{bias}>U_{depl}
- charged particles generate electron/hole pairs
- electrons move towards the electrode and induce a signal

Semiconductor Hybrid Pixel Detector

Detection mechanism:

- apply high voltage in reverse direction
- E-field builds up from junction to backside
- E-field collects all free charge carriers
 - U_{bias}>U_{depl}
- charged particles generate electron/hole pairs
- electrons move towards the electrode and induce a signal
- signal is read-out via an attached front-end chip
 - -> hybrid pixel detector

Hybrid Pixel Detectors

- hybrid pixel detectors are composed of sensor and read-out chip connected by solder bump-bonds
- monolithic pixel detectors combine read-out and sensor in one chip
- hybrid approach is most powerful in terms of speed and radiation tolerance
- ATLAS uses hybrid pixel detectors only:
 - PIXEL: $400x50 \ \mu m^2$ pixel size, n-in-n
 - IBL: 250x50 μm²
- pixel size, n-in-n

Solder Bump-Bonds

Sputter etching and sputtering of the plating base / UBM

Spin coating and printing of Photoresist

Electroplating of Cu and PbSn

Reflow

Chip

25 µm

ATLAS Pixel Modules

Components:

- 1 sensor
- 16 FE chips
- flex circuit print
- module controller chip (MCC)

ATLAS Strip Detector

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut

ATLAS SCT

- double-sided modules
- 6.3M channels
- 16 μ m resolution in R ϕ and 580 μ m in z
- 4 barrel layers
 - 80 µm pitch strips
- 9 disks per side
 - 70-90 μm pitch strips
- 30% of disk modules produced at MPP!

Function:

- cover large area (61.1m²)
- best compromise of cost and precision

Strip Detector

Working principle:

- strip detector is pixel detector with long pixels
 - resolution in one direction bit worse
 - resolution in other direction much worse
- only 1D information given!
- read-out each single strip

Strip Detector

Working principle:

- strip detector is pixel detector with long pixels
 - resolution in one direction bit worse
 - resolution in other direction much worse
- only 1D information given!
- read-out each single strip

Improvements:

- use another rotated sensor on top
- ATLAS uses rotation angle of 40 mrad
- 2D information by combination

(Werner-Heisenberg-Institut

23

ATLAS Transition Radiation Tracker

ATLAS TRT

- separated into barrel and disks
- barrel with straws parallel to beam
- disks with straws perpendicular to beam
- 400k channels
- straws have diameter of 4mm
- 170 μ m resolution in R ϕ , 40-75cm length

Function:

- provide tracking at large radii
- particle identification via TR
- trigger information
- best cost-effectiveness

Transition Radiation Detector

Theory:

charged particles emit gamma radiation (x-ray

energies) when entering a different media

• intensity given by
$$I=rac{\gamma\,q^2\,(\omega_1-\omega_2)}{3c}$$

$$\cdot$$
 with $\gamma = rac{E}{mc^2}$

- mass of a particle can be calculated for known energy
- used here for electron/hadron identification

Experiment:

- thin straw tubes with anode wire as proportional counter
- two threshold read-out
 - 1. low threshold for ionization
 - 2. high threshold for TR-photons

ATLAS ID Performance

Primary vertex resolution

ATLAS ID Performance

Vertex reconstruction efficiency

ATLAS Inner Tracker (ITk) Upgrade

ITk:

- new tracking system facing HL-LHC
- concept foresees all silicon detector
 - 5 pixel layers
 - 4 strip layers
- main challenges
 - increased occupancy
 - <*µ*>=24→<*µ*>=200
 - more radiation damage
 - 5e15 $n_{eq}/cm^2 \rightarrow 14e15 n_{eq}/cm^2$

Inner Detector:

Conclusion

- composed of
 - Pixel Detector
 - Strip Detector
 - Transition Radiation Tracker
- used for
 - precise tracking (including (secondary) vertex finding, impact parameter, p_T , ...)
 - particle identification
- reaches primary vertex resolution of 20 μm / 20 μm / 50 μm (x/y/z)
- will be replaced by the ITk

	R $arphi-$ Resolution [$ m \mu m$]	z− Resolution [µm]
PD	10	110
SCT	16	580
TRT	170	750.000-1.500.000

Thank you for your attention!

ATLAS ID Performance

Silicon Strip Detector

 $\frac{1}{\Delta_{f} \cdot \Delta_{g} \ge \frac{1}{2} t}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Working principle:

- one segmented side / one homogeneous side
- read-out each single strip
- no 2D information given!

Improvements:

- segment both sides and tilt them (ATLAS: 40mrad)
- 2D information is given, but

02.12.16

31

Transition Radiation Detector

Straw tubes:

- straw tubes are operated as proportional counters
- anode is 31 μm thin gold-plated tungsten wire
- cathode is tube
 - 60 µm multilayer film of carbon-polymide-aluminium-Kapton-polyurethan
- Xe-CO₂-O₂ (70-27-3) gas used to convert TR x-ray photons and to create free charge carriers by penetrating ionizing particles

ATLAS Pixel Detector

Necessary Resolution: low along the beam pipe • • straight line high in bended direction • • , measure curvature for p_T