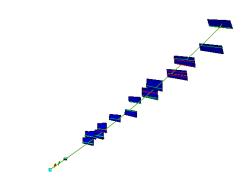

Making use of experimental data: Computing and analysis

Ludovic Scyboz

Max-Planck-Institut für Physik

From the detector output to the physics

• Goal: **store/manage** the data


- reconstruct objects
- and extract the physics

• • = • • = •

From the detector output to the physics

• Goal: **store/manage** the data

- reconstruct objects
- and extract the physics

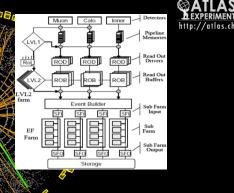
3 K K 3 K

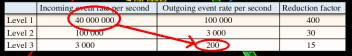
Outline

• The ATLAS Computing Model

- What happens with the raw data?
- The Event Data Model
 - Or how to make everything readily accessible
 - The Athena framework
- Physics analysis and the production chain
 - Monte Carlo and the Grid
 - The full treatment: from generation to reconstruction

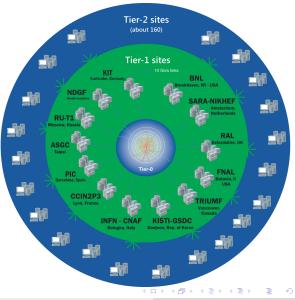
Conclusion




- 4 週 ト - 4 三 ト - 4 三 ト

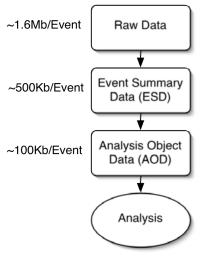
Trigger and Data Acquisition

- Need to reduce data flow to values that can be coped with by mass storage
- Raw data stored at CERN Data Center (Tier-0) and passed along to computing farms (Tier-1,2,3)

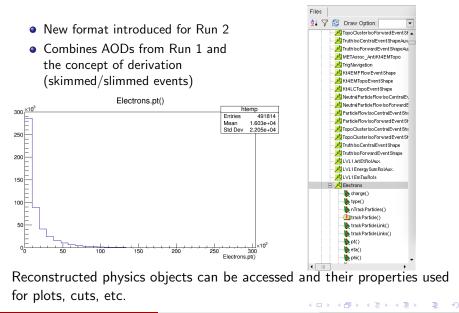


Event rate after each trigger level (Level-1, Level-2, Event Filter)

Computing model


- Tier-0: CERN Data Center
- Tier-1: Support for Tier-0
- Tier-2: Universities/institutes
- Tier-3: Local clusters/individuals

The Event Data Model: data formats


RAW

- ESD (Event Summary Data): reconstructed detector output
 → information used for particle identification, track fitting, jet calibration...
- AOD (Analysis Object Data): summary of event reconstruction with physics objects (electrons/muons, jets, ...)
 → see next slide!
- **TAG**: general features of the event, used to quickly select interesting events in ESDs or AODs

()

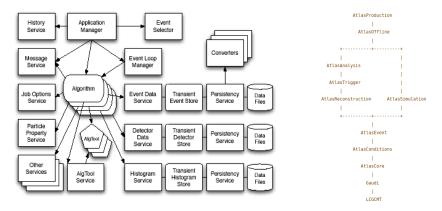
xAODs: analysis-oriented, derived data sets

Ludovic Scyboz (MPP)

xAODs: why and how use them?

A collection of classes and types: to ensure commonality across the detector subsystems and subgroups such as trigger, test beam reconstruction, combined event reconstruction and physics analysis.

- **xAOD::EventInfo**: what's the pileup? What's the run and event number?
- xAOD::IParticle: interface for all particle types, clustered energy deposits and tracks


```
root [0] gROOT->Macro( "$ROOTCOREDIR/scripts/load_packages.C" ); P
root [1] xAOD::Init();
root [2] f = TFile::Open( "/afs/cern.ch/atlas/project/PAT/xAODs/.p
root [3] t = xAOD::MakeTransientTree( f )
root [4] t ->Draw( "ElectronCollection.pt() - ElectronCollection.p
```

be directly handled in Athena (see next slide)!

	IParticleContainer
	EventInfo
	Definition of the latest event info version.
	CutBookkeeperLink_t
	CutBookkeeperLinks_t
	CutBookkeeper
	Define the latest version of the CutBookkeeper class.
	CutBookkeeperAuxContainer
	Define the latest version of the CutBookkeeperAuxContainer class.
	CutBookkeeperContainer
	Define the latest version of the CutBookkeeperContainer class.
	Egamma
	Definition of the current "egamma version".
	EgammaAuxContainer
	EgammaContainer
	Definition of the current "egamma container version".
	Electron
	Definition of the current "egamma version".
	ElectronAuxContainer
	ElectronContainer Definition of the current "electron container version". More
;	Photon Definition of the current "egamma version".
/	PhotonAuxContainer
•	PhotonContainer Definition of the current "photon container version". More
	EgammaContainer_v1 The container is a simple typedef for now.
	ElectronContainer_v1 The container is a simple typedef for now.

The Athena Framework

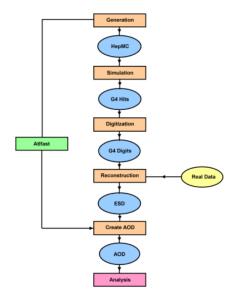
• Basically, after Run I, most of the analysis code had grown naturally by itself

• Need for a harmonized and modularized analysis framework

э

イロト 不得 トイヨト イヨト

The Athena Framework: algorithm sequencing


• Physics analysis implemented sequentially

- Calibration of the muons, jets, ...
- Selection cuts
- Histogramming

<pre># Fetch the AthAlgSeq, i.e., one of the existing master sequences where one should attach all algorithms algseq = CfgMgr.AthSequencer ("AthAlgSeq")</pre>			
# Select muons above a pt threshold and			
# create an output muon container only with the selected muons			
<pre>algseq += CfgMgr.ParticleSelectionAlg ("MyMuonSelectionAlg",</pre>			
	InputContainer	= "Muons",	
	OutputContainer	= "SelectedMuons",	
	Selection	= "Muons.pt > 15.0*GeV"	
)		
# Build all possible di-muon combinations and call the result viable Z-boson candidates			
<pre>algseq += CfgMgr.ParticleCombinerAlg ("MyZmumuBuilderAlg",</pre>			
<pre>InputContainerList = ["SelectedMuons", "SelectedMuons"],</pre>			
	OutputContainer	= "ZmumuCands",	
	SetPdgId	= 23 # This is a Z boson	
)		

- 4 同 6 4 日 6 4 日 6

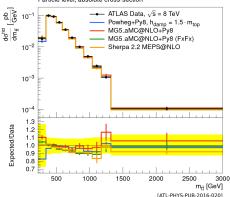
Monte Carlo production and comparison to data

- To account for detector inefficiencies, geometric acceptance, etc..., Monte Carlo-produced samples have to be simulated, digitized and reconstructed
- All steps can be run in parallel on the ATLAS Grid
- Also done in Athena!
- AODs can then be constructed and analyzed

副下 《唐下 《唐下

Schematic representation of the Full Chain Monte Carlo production.

Analyses: datasets and MC samples

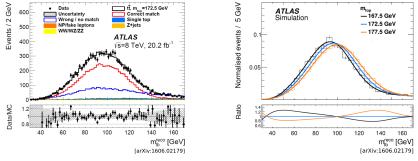

- Lots of possible tools and custom analyses (C++, Python, ROOT...)
- Rivet is directly implemented in Athena as well
- Histogramming observables in YODA format: data and MC directly comparable

```
from AthenaCommon.AlgSequence import AlgSequence
topSequence = AlgSequence()
from Sherpa i.Sherpa iConf import Sherpa i
sherpa = Sherpa i()
# [...] set generator parameters.__input files. .
topSequence += sherpa
# Initialise Rivet interface
from Rivet i.Rivet iConf import Rive
rivet = Rivet i()
# Add list of analyses to run
rivet.Analyses += [ 'MC ZJETS' ]
# Specify run name for histograms
rivet.RunName = ""
# Specify output filename which will contain the histograms
rivet.HistoFile = "myanalysis"
# Specify MC cross section in pb
rivet.CrossSection = 800.0
topSequence += rivet
```

(日) (周) (三) (三)

Analyses: RIVET

- Library of predefined functions for jets, event shapes, ...
- Based on physical objects with the help of projections:
 - Dressed electrons/muons
 - Jets (FastJet)
 - Final state hadrons
 - Reconstructed bosons
- Validated analyses with datasets available for download
- Plugin to write your own analyses



4 E N

Particle level, absolute cross-section

$\mathsf{MC}/\mathsf{data}$ example: top mass determination in the dilepton channel

• Uses the template method: varying the top mass in Monte-Carlo

• And fitting the template to the data

 $m_{\rm top} = 172.99 \pm 0.41 \ {\rm (stat.)} \pm 0.74 \ {\rm (syst.)} \ {
m GeV}$

Conclusion

- Reduction of data load through triggering, reco/data quality, first-level analyses
- Several formats depending on what data is used for: normally, AODs should suffice for physics analyses
- The whole of the data can be accessed if necessary
- \circ Need for a structured skeleton for all computing tasks ightarrow ATHENA
- Full chain automatized for the direct comparison of Monte Carlo and data sets

2010-03-30, 12:58 CEST Run 152166, Event 316199

Ludovic Scyboz (MPP)

Ques...tions?

