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Scientific Data Sources

LHC detectors are
large international
projects

(e Built by institutes from

all over the world,
~10'000 scientists
fom ~70 countries

e Detecors spcialised on
RS different sicientific
o [ questions ¥,

Important guiding principle:
LS " equal access to all data for all participating scientists




LHC Performance over the years

Delivered Luminosity [fb]

2016 run delivered
more data than in

in the 3 years before !

50: ! I I I | | I .
455 ATLAS Online Luminosity 3

- = 2011pp Vs=7TeV E
405_ —— 2012pp Vs=8TeV i E
35F =—2015pp ¥s=13TeV E

- ——2016pp Vs=13TeV .
30 E
25F- E
20; _i
15F E
10 EE
3 3
o—L— -
ot ot W ot

Month in Year

corresponds to 3.5 Trillion pp-collisions/experiment




Data Sources - example CMS

* ~ 100 Million Detector cells
e LHC collision rate: 40 MHz
e 10-12 bit/ cell

— ~1000 Tbyte/s raw data

* Zero-suppression and trigger
reduce this to

.only" ~1 Gbyte/s

Worldwide
Community




Heterogeneous Spectrum of Applications
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Broad palette of applications
with different requests for CPU, Storage and 1/O:

mainly need (much) compute

— data selection and distribution

power

need high 1/0O- and network bandwidth

— centrally organisised simulation and reconstruction of large data sets

— physics analyis by many individuals with random access to data and resources
with (often poorly desinged private) code — another challenge




1998: Idea of ,,Grid Computing”
came at the right time for the LHC:

GGA

computational grid

is a hardware and software infrastructure

that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilities.”

C. Kesselman, |. Foster, 1998

e Coordinates resources that are not subject to central control ...
e ... using standard, open, general-purpose protocols and interfaces ...

e ... to deliver non-trivial quality of services

|. Foster, 2002




Data- and Information flow in the WLCG

The Worldwide LHC Computing Grid 2016

Tier1 in D
GridKa at KIT

T2inD
- DESY
- MPI Munchen

- RWTH Aachen
- Uni Freiburg
- Uni Gottingen

- LMU Munchen
- Uni Wuppertal

&l
Developed by e-5cie

: [ nce, HEP
] Imperial College |

led: 182
es: 142 2T0Z6

London
il O — T — —

Java Applet Window

N\ @ German fraction

Ein Supercomputer mit WLCG
1_67 centres _ 400'000 Prozessorkernen ~15% Tier-1
in 42 countries: _pp| 310000 TB disk storage Jo _1er
11Tier-1 390'000 TB tape storage ~10% Tier-2
L ~2 Million Jobs/day
156 Tier-2 \ ~500 TB/day network transfers )




BREAKTHROUGH
of the YEAR

o me s
success of the LHC Phyics Program

(also) thanks to the extraordinary
perfomance of “Grid Computing”




: : Libs of
Business emails sent Cangress

3000PB/year In 2012: 2800 exabytes
(Doesn’t count; not managed as created or replicated
a coherent data set) 1 Exabyte = 1000 PB

LHC data
15PBfyr

Current ATLAS
data set, all data
products: 140 PB

Yes !



¢ 300 000 000 CPU hours / month delivered to experiments

CPU Ddlivered HS06-Hours/ month

3
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¢ 500 TB data transferred routinely per day (2x more than peak performance Run 1)
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The year 2016: Run 2 computing needs revised

¢ LHC performance was above expectations,
need for additional compute resources driven
(mainly) by:

- LHC live time (37% — > 60%)
- Luminosity (1.0x10%* — 1.2x103%* or better)
- Pile-up (CMS, ATLAS) (21 — 33 on average

o
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ATLAS Online Luminosity
2011pp Vs=7TeV
= 2012pp Vs=8TeV
— 2015 pp Vs=13TeV
— 2016 pp Vs =13 TeV
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¢ For 2016, the available resources were barely sufficient

But:
future hopes in continued superb LHC performance
already led to an increase of requirement estimates by ~25%



Events/5 GeV
&

Start of LHC - 2009: s = 900 GeV

Run1: Js=7-8TeV,L=2-7x10¥ cms"!
Bunch spacing: 75/50/25 ns (25 ns fests 2011; 2012 7)

LHC shutdown to prepare for design energy and nominal luminosity

Delivered Luminosity [fo™]
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ATLAS Online Luminosity
— 201 pp (B8=7TeV
— 2012pp (S=BTeV
—2015pp (5= 13 TeV
— 2016pp (5=13TeV
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5 )
Injector and LHC Phase-| upgrade to go to ulﬂmhi\\hﬁ\ﬂﬂ

so far, only ~2% of total
expected [ L recorded H

@ still large physics discovery potential

® Dbut there are enormous challenges ahead !!!

~25 fo’!

>50 b

[Ldt



High-Luminosity LHC — high hit density in detectors

CILIFH O] B S LI

78 pp-collisions in one bunch crossing




The long-term perspective: effects on SW & Computing

%
e
<
B
5-10 kHz 2 MB/event
- J

¢ needs driven by new detectors, higher data rates, more complex events

a ,‘ 3
.1-. :
<] .
1 —
f’—ll'l ] III|'I P

kHz 4 MB/event

a N
a N
ATLAS — 50GB/s
& CMS ‘
expect ® Run4
~10x higher e Run3
data rates
in run 4 - 1GBIs Run2
@
- /& Run1 )
4 . N
Data estiimates for 1st year of HL-LHC(PB) m?mmmmﬁuum
- izs 10

- raw

.

Storage: 2016

2027
50 PB — 600 PB

- derived 80 PB — 900 PB

CPU:

- x60 from 2016

Source: lan Bird
(CHEP “16)

J

hardware technology expected to bing only factor 6-10 in 10-11 years
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The Challenge(s)
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The end of Moore's Law ?

Moore's prediction (1965)
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facing a new Situation since ~2005

10,000,000

1,000,000

Dual-Core Itanium 2

-/

100,000

Intel CPU

(sources: Intel, Wikipe

Trends
dia, K. Olukotun)
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© Herb Sutter 2009

| Transistors (000)
@ Clock Speed (MHz)
4 Power (W)

@ Perf/Clock (ILP)

1970

1975 1980

1985

1990 1995

2000

2005 2010

-
past:

smaller structures

led to higher clock
rates and hence
software performancse

today:
limits of energy and
thermal budgets
reached

— increase in
complexty of CPU
- parallelism
- grapics cores
— multi-core
architectures

-
big challenge

for software

\—___development/


http://www.gotw.ca/copyright.htm

10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

1970

facing a new Situation since ~2005

Dual-Core Itanium 2

-/

Intel CPU

(sources: Intel, Wikipe

Trends
dia, K. Olukotun)

| Transistors (000)

© Herb Sutter 2009

@ Clock Speed (MHz)

@ Perf/Clock (ILP)

-

1975 1980 1985

2010

\_

past:
smaller structures

led to higher clock
rates and hence
software performancse

today:

limits of energy and
thermal budgets
reached

— increase in
complexty of CPU
- parallelism
- grapics cores
— multi-core
architectures

-

LHC code

designed
\here
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Recent Developments

/
more and more transistors / Chip, but no large increase

in clock rates since 2005 — ,free Lunch is over”

—> more complex processor architectures
with more and larger registers

- larger, multi-stage cache storage

- vectorisization (SIMD=,Single Instruction Multiple Data“)
e.g. MMX, SSE, AVX

- multi-core architectures with 2/4/6/8/12 ... CPU cores/chip
,2Hypterthreading” on Intel Architecture

- pipelining ( i.e. parallel execution) of instructions
- improved branch prediction

- integrated graphics processors (GPU)

Increasing parallelism and heterogeneity of architectures:
—> Challenge for the development of efficient program packages




example: Event Reconstruction in CMS

rfrac:tion of CPU time for reconstruction steps R

in top-pair events (CMS 2011)

Tracking
EGamma
Muon
PartFlow
LocalCalo
LocalMuon
Jets

BTag
LocalTracker
Tau

HCAL
ECAL

CMs CR-2011-002

PRRRUNCNRNn

.

%any concurrent pp collisions (,Pile-up®) CPU time for QCD events (CMS 2011 & 2012)

40

v,

1

© Baseline
O Fall 11 campaign

3
S 30 o
o 20 ]
— w
g
g 10
drives up reconstruction time 0
0 7.5 15 22.5 30
Number of PU interactions z
~3x faster reconstruction by optimisation and & new techniques

D. Piparo: ,Higgs in CMS was discovered with C++11°



Run 2 achievements

o CMS Simulation, /s = 13 TeV, it + PU, BX=25ns

€ g0 Full Reco Current-+— Track Reco Current

E I Full Reco Run1 Track Reco Run1
S | PU140 |
£ 50— » = 2
= _ y

10 s PU40 ,/__.
r 3] A '
= 2 - 3 4 5 6
vertex region in an Luminosity [10** cm?2 s
event with 78 pp collisions in one bunch crossing i __ | | B
= E ATLAS Simulation Preliminary ]
¢ 70 RDOto ESD E
> ef BoaTev
(=5 - <> = |
. . . @ E. 25 b h i =]
Pile-up drastically affects CPU time needed for E Aun  Geomery
. . . g pp —
reconstruction & simulation g ¥ HS06 = 13.08
= a0 —s— Full reconstruction  —|
Té 5 —a— |nner Delector only ]
8 20 =
= g
. . 0 17.2, 32bit 19.0, 64bit | 19.1, 64bit I 20.1, 64bit
A lot has been achieved already, but still Software release

a long way to go to handle 10x more data
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Sociological Challenge

Number of Software Developers depends on phases of an experiment
— large number of people during commissioning phase
— more and continued focus on physics analysis reduces

the number of developers

P. Elmer et al;
CHEP 2013

Number of unique developers committing
to CMSSW each month

Total over all time - 963

G vk o Sh . h WL e Ui wh

year

How to ramp up again to
have enough expertise for
the SW&computing challenge ?

Must make work on SW & Computing
— more attractive and
— scientifically rewarding
especially for young people !

Computing
and Software
for Big Science

H

The HEP Software Foundation
facilitates coordination and

F common efforts in high energy
physics (HEP) software and

computing internationally.




data / month

the good news: Network Bandwidth still increasing

100 PB
transferred data volume / month
10 PB1
example:
1 pg] Energy Sciences Network
(ESnet) des DOE
100 TB
Jan 2013: 14PB
accepted
10 TB-
1 TBH
100 GB{ cenicupdate Newsleter, Vol. 16, Issue 1
(www.cenic.org)

'y0 '91 '92 93 '94 '95 '96 '97 '98 '99 '00 '01 '02 03’04 '0O5 '0D6 '0O7 08 '09 10 11 12
Year

- still unbroken exponetial growth, factor ~1,8 / a in last 20 years
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Accepting the Challenge !



Network (2)

LHC Optical Private Network for T0O-T1, T1< T1

LHCOne for transfers T1 < T2 & T2 «T2
relevant for physics analysis

SimFraU

Uvic  UADb

UTor
TRIUMF-T1 CANARIE McGilu

NDGF-T1a

NIKHEF-T1

Canada

vvvvv
KNU
KERONET2
Korea 1 DEN  pE-KIT-T1
Germany
ASGC-T1 GEANT
ASGC
Europe
Taiwan
Caltech
UFlorida SoW
NCU NTU MidW CC-IN2P3-T1
TWAREN Glakes GRIF-IN2P3 Sub-IN2P3
Tai RENATER CEA
2wen Internet2 Lanvad F—
PIC-T1 INFN-Nap CNAF-T1
; NORDUet Py RedIRIS GARR
WG - e o Spain ltaly
canarie Mk SGARR NILYE™  STHRLIGHT™ CUDI UNAM
A Mexico
CERMN Ry =1
( N RS R —=l 10,20 & 30 Gb/s
o a7 . L
cuith , "%f‘ | Blnate e Yoy
bt e
on

CERN-T1

NDGF-T1a

NDGF-T1c

NORDUnet

Nordic

— Private Network

— only trusted partners,
no firewalls needed

— separates LHC traffic

fromgeneral scientific
networks

— management by
regional / nationale
network providers

http://lhcone.net




Development of Computing Models

-

' ' - Change of -
increasin .

network J Computing Models
bandwidth

N 4

wtransferring is cheaper than storing”

enable [Datea processing via network J

,Data federation®“: T1, T2 (& T3) as unified,
distributed storage system

4 L R
based on (HEP-spezific) ﬁ‘ XRootD

ATLAS: ,FAX" (Federating ATLAS Storage Systems using xrootd)

CMS: ,AAA" (Any data Anytime Anywhere)
\ btw: concept since long exercised by ALICE ! )




100 GB/s WAN bandwith

2x100 GB/s Links
CERN < Wigner Data Centre (Budapest)

as extension of CERN TO in production

DANTEY |
100 GbE

/7" Wigner REP

o g "--___1...;.. 'L.-.T-S-y-'S{"E".I‘I“IS : A Lsirin

expect more 100 GB/s networks, also in Germany:
- connection between HGF Centres
- some “Landernetze” (e.g. BelWlu end 2017)



Resources external to WLCG - Heterogeneous Hardware

(- Cloud Resources ] N
: L -\ﬁ\/_ ] z.B. Open Stack
- private (e.g. institute clusters) /@& Q 5
- commercial (Amazon, Google, Telekom ...) /Ej_ R 'ii Beispiel: Nutzung der
%‘—H N[ ATLAS & CMS HLT-Farmen
left R&D Phase since long e wahrend des LS 1
. — »,Grid of Clouds* is a reality gy Y,
4 s N
- HPC — Cluster — no Grid services / authentication

- many HEP applications
run

- MPI interfaces and
SAN not needed for HEP

— fast, but small and expensive disk
— often small WAN bandwidth
— different ,Site Policies®

- | e.g. Super-MUC at LRZ in Munich, special solutions for every
—> an expensive way: SDCC at CMS or the new bwHPC sing|e case — persona| |
\_ Cluster in Freiburg (ATLAS/CMS/LHCb) _ Y,

-
— other processor architectures (ARM)

Goal: Optimisation of CPU cycles / Watt
for special applications
Tests ongoing,
many HEP-applications run on ARM

Is this (part) of the future ?

\_ and SATA Disks at KIT (SCC) )

~

since
2012 more
mobile
than x86
processors
sold




Massive usage of Cloud Resources

] Running jobs
B 30 Days from 2016-‘2{-11 to 2016-02-11
0000 T T T T

¢ Amazon Cloud (Amazon Web Services) CMS
provided to CMS via FNAL Tier1

— more than doubled available CPU at

L0

0,000

Via Fermilab

Tier Ones e HEPCloud:
¢ — still sponsored by provider, but cost on o |- CMS Amazon Web
spot market approaching reasonable | kel
sage

levels: ( FNAL: 0.9 Cent/ CPU hour,
Amazon: 1.4 Cent/ CPU hour)

Fermilab Tier-1

¢ bwFOR cluster NEMO in Freiburg: ~ Slots requested ~— Slots draining

. . — Slots available Jobs available
for Neuroscience, Elementary Particle
Physics and Microsystems engineering 10000 [

30000
- fUIIy Vlrtuallzed Set-up’ ContrO”ed %8888.':;I::.'II:::::::I S R T
by ROCED (KIT) and HTCondor 5 8000 TR |

— Production system scaled up to 11k % 2’838 :

virtualized cores, more than 7 million ;‘338

CPU hours of user jobs processed in 2000 |

four months s Al
0 30 35 40
— saturating 10 GBit/s BelWu link between Time [days]

Karlsruhe - Freiburg and NRG Grid storage at GridKa



Volonteer Computing

People volunteering their PC’s spare CPU
cycles for science

most commonly used software is BOINC

ATLAS MC simulation jobs inside a CernVM

Jobs are taken from ATLAS job management
system and submitted to BOINC server through
ARC CE

5 SmaEs  DxAUS MEAE nal

MNEven!s Processed in MEvants (Millicr Eventsy
ZO630 Howrs from Week 17 of 2024 to Week 26 of 2008 UTT
v v T T T T

Steady growth of volunteers, 11-12k ,running®
job slots Providing 1-2 % of overall ATLAS CPU

D. Cameron, CHEP'16 . |




Cloud-enabling Technologies in HEP

CernVM: .
 Virtual machine based on Scientific Linux (maintained by CERN) [:J CernV
» Very lightweight, can be directly deployed on various cloud sites Software Appliance

CernVM-ES:
* On-demand HTTP based file system (Caching via HTTP Proxy) B Carvid
« Many big experiments use it to deploy software to WLCG l 1 Fl Lt ten
compute centres -—— e System
» works excellently also on cloud sites

HTCondor: N
* Free and open-source batch system commonly used in HEP I-I'rcOﬂdUr
« Excellent with integrating dynamic worker nodes (even behind B8% High Throughput Computing

NATed networks)

xRootD and data federations for remote access

“Cloud manager”, e.g. ROCED [KIT]:
* Cloud scheduler that supports multiple cloud APls

(= £,
ﬁ XRootD
(OpenStack, Amazon EC2 and other commercial providers)

 Easily extendable thanks to modular design ‘QI ! e
 Parses HTCondor ClassAds and boots VMs on cloud sites ' OCED

depending on the number of queued jobs




Extrapolated future resource needs

Large increase in resource CPU needs (kHS06)
needs for both CPU and oons
storage driven by ’ [
Monte Carlo (MC) simulation 100000 T M= Data Reprocessing a
) 80.000 L MC Reconctruction
attention: © ' [ MC Simulation Full
“simple” extrapolation 2 60,000 - vgen
from 2016 ATLAS = 40,000 = == Projection
computing model ’ ——CPU need
(S.Campane, CHEP 16) 20,000
.
I SR I R I A O R
Year
Need to follow multiple Disk needs (PB)
roads to face the challenge: 2'500.0
2'000.0 B MC ACD WS MC DACD
- code optimisation 15000 L empAGD oo
- [=a]
- eﬂ:ICI_ent use Of new * 1'000.0 - == == Projection ====Disk Needs -
architectures
- additional resources, 000

shared with other 0.0 -
science communities




i

it

| commodity
. hardware

| ‘onkh\dis:—
- early version

worldwide LHC
Computing Grid o
B (SRS L Hans has seen
C i ' " " and helped
shaping these
developments

Helix Nebula Sciene Cloud


http://lhcone.net/

Mountains and surmountable problems

(kHS06)

120,000

100,000 +

80,000 |

kHS06

60,000

40,000

20,000

0__

expected by

. . . .., |technological
if we simply “sit and wait progress

Factor ~9 missing

But of course,
the challenge is accepted
and will hopefully be met !

Need experienced and
brave mountaineers

like you, Hans !



Dear Hans,

| wish you all the best,
enjoy your “Retirement” and
the new freedom it brings.

I'm sure it will be a very active time!
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