

AWAKE Experiment at CERN.

Project Review

Mikhail Martyanov (Max-Planck Institute for Physics)

on behalf of AWAKE Collaboration

Max Plank Institute for Physics, Munich, December 18-19, 2017

What is AWAKE?

AWAKE = Advanced WAKefield Experiment

- Proton-driven Plasma Wakefield Acceleration Experiment
- Aiming to accelerate electrons to high energy (GeV-TeV)
- At CERN site with SPS proton bunches

AWAKE Structure:

Spokesperson: Deputy Spokesperson: Technical Coordinator: Physics and Experiment Coordinator: Simulation Coordinator: Allen Caldwell Matthew Wing Edda Gschwendtner Patric Muggli Konstantin Lotov (MPP) (UCL) (CERN) (MPP) (BINP)

Some useful links:

AWAKE web-page: AWAKE INDICO web-page: AWAKE Design Report:

http://awake.web.cern.ch/awake/ http://indico.cern.ch/category/4278/ http://cds.cern.ch/record/1537318

The Zoo of Plasma Wake-field Accelerators

... started from pioneer paper "Laser Electron Accelerator" by T.Tajima and J.Dawson Phys. Rev. Lett. 43, 267 – Published 23 July 1979

Laser Beat-Wave WFA (~1 ns) Two frequencies laser pulse (pulse train)

Self-Modulated Laser WFA (~1 ns) Raman forward scattering instability in a long laser pulse

Laser WFA (~0.1 ps) Short intense laser pulse

Particle Bunch WFA Short intense particle bunch ~ 1ps proton bunch does not exist !

~1ns

Self-Modulated Particle Bunch WFA

Long bunch experience transverse self-modulation instability

Scope of AWAKE proof-of-principle experiment

AWAKE at CERN

AWAKE Baseline Parameters

Plasma	Rb plasma density	10 ¹⁴ ÷ 10 ¹⁵ cm ⁻³ 7·(10 ⁻³ ÷ 10 ⁻²) mBar at 500°K
	Expected gradient	1 ÷ 3 GV/m
	Uniformity	<0.1%
	Length	10 meters
Proton bunch	Energy	400 GeV \rightarrow 64 nJ/p ⁺ \rightarrow 19.2 kJ/bunch
	Charge	$3 \cdot 10^{11}$ particles \rightarrow 48 nC
	Length, σ_z	$12 \text{ cm} \rightarrow 400 \text{ ps}$
	Radius, o _r	200 μm
Electron bunch	Energy	20 MeV \rightarrow 3.2 pJ/e ⁻ \rightarrow 4 mJ/bunch
	Charge	1.25.10 ⁹ particles \rightarrow 200 pC
	Length, σ_z	$0.25 \text{ cm} \rightarrow 8 \text{ ps}$
	Radius, o _r	<u>200 μm</u>
Laser	Energy	up to 450 mJ
	Pulse duration	120 fs
	Beam size at Rb vapor (focused from 40m)	a few mm
	Focused intensity	> 50 TW/cm2

Seeded Self Modulation (SSM)

Short proton bunch driver No SSM

- \rightarrow Space charge of drive beam displaces plasma electrons.
- \rightarrow Plasma ions exert restoring force.

Long proton bunch driver **SSM develops**

AWAKE Physics: Principle

Ionization front is co-propagating with a short laser pulse and creates Seeded Self Modulation (SSM) $\tau_{laser} \sim 100 \text{ fs} \ll \tau_{wake} \sim 3 \text{ ps}$

A WAKE

CÉRN

Max-Planck-Institut für

AWAKE Physics: Principle

Ionization front is co-propagating with a short laser pulse and creates Seeded Self Modulation (SSM)

M.Martyanov, AWAKE review, MPP Munich, 19-12-2017

ERN

Max-Planck-Institut fü

A IV-A-K-E-

AWAKE Experiment at CERN

 Phase 1: Understand the physics of seeded self-modulation processes in plasma → started Q4 2016
 Phase 2: Probe the accelerating wakefields with externally injected electrons → started Q4 2017
 We had a very successful AWAKE programm during 2015 - 2017!

 Building an experiment from 2015.
 First SSM at the second day of run in 2016!
 Proven SSM phase stability in 2017.

- Rb-cell diagnostics (white light interferometry, T-sensors etc.)
- Laser line diagnostics and alignment (CCD's, energy, ACF etc.)
- **p⁺ diagnostics:**
- Standard (BCT, BPM's, luminescent / OTR screens)
- Two-screen halo diagnostics
- Visible OTR, 2 streak cameras SSM visualization
- Microwave CTR SSM frequency measurement
- e⁻ diagnostics :
- Standard (BCT, BPM's, screens)
- Large wide-band spectrometer (20 MeV to 3 GeV)

Key Component : Rb vapour cell

- Measure at both vapor cell ends with 0.1 to 0.4 % precision for gradient determination
- Use Mach-Zehnder interferometer and white light interferometer

Stable density and gradient:

M.Martyanov, AWAKE review, MPP Munich, 19-12-2017

F.Batsch (MPP)

Two-Screen p⁺ Halo Diagnostics

The aim of the diagnostic – to measure the defocused part of a proton bunch (halo)

Each screen port has 2-CCD optical system and a mask to hide a core of the beam

ERN

Max-Planck-Institut für Pl

AWAKE

Two-Screen p⁺ Halo Diagnostics

- **p**⁺ are defocused by the transverse wakefield (SSM) form a halo
- Focused p⁺ form a tighter core

Max-Planck-Institut für

- Estimate of the transverse wake-field amplitude (integral)
- Information about saturation length? 8 m **Screen 1** Screen 2 20 Longitudinal electric field E₄ 10^{3} evolution along plasma cell 10 -Plasma OF counts / bin y / mm Emar along the plasma 10⁰ 0 - $E_{z,maz}/E_0(7x10^{14}cm^{-3})$ 10¹ -10 -20 10° n_o (cm⁻³) -1010 -20 20 0 -20 -1020 1x10¹⁴ 0 10 3x1014 5x10¹⁴ 20 -7x1014 10⁻³ 103 0 2 4 6 8 10 Plasma **UN** z, m 10 counts / bin 0 **Rb** plasma 10¹ -10 10⁰ -20 10 20 -20 10 20 -10-10-200 0 x/mm x/mm M.Martyanov, AWAKE review, MPP Munich, 19-12-2017 **Courtesy of M.Turner (CERN)**

Preliminary !!!

OTR Diagnostics: SSM

- The aim is to get time resolved picture of SSM
- Timing at the ps scale
- Effect starts at laser timing => seeding of SSM
- Density modulation at the 10ps-scale visible

OTR Diagnostics: SSM

- Preliminary !!! "Stitching" demonstrates reproducibility of the µ-bunch process against bunch parameters variations (N = $2 \cdot 10^{11} \pm 5\%$, $\sigma_t = 220 \pm 10$ ps)
- Phase stability was proved, it is essential for e⁻ external injection !

Streak camera images stitched together with the help of the reference marker laser line

A WAKE

Coherent Transition Radiation (CTR)

The aims of CTR diagnostics are:

- To measure a relative or absolute CTR signal strength
- To measure a carrier frequency of CTR signal or its harmonics
- To show that it is close to an expected plasma frequency
- With our AWAKE parameters we expect f_{CTR} = 90 290 GHz

CTR Diagnostics: SSM frequency

Preliminary !!!

- At full Rb ionization we expect $f_{mod} = f_{pe} \sim (n_{Rb})^{-0.5}$
- CTR signal detected also at harmonics (power not calibrated)
- Modulation of p⁺ is nonlinear, proven by presence of CTR harmonics

Heterodyne CTR and streak camera FFT

K.Rieger (MPP), F.Braunmueller (MPP)

Summary

- Year 2017 was very successful for AWAKE experimental program!
- We observed a stable Seeded Self Modulation of a proton bunch
- Proven stability of a modulation phase w.r.t. an ionizing laser
- We observed defocused protons with the halo measurement
- FFT of an OTR streak camera image gives a frequency peak in agreement with an expected plasma frequency assuming full Rb ionization
- Measured CTR carrier frequency is in agreement with a frequency of OTR streak camera FFT and with a plasma frequency calculated from Rb density.
- Electron line has been recently commissioned
- We anticipate year 2018 to be exciting with an electron acceleration!

Thank you!