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The Projects in the Group
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The Projects in the Group
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The Main Driver: Linear Colliders ,,’,f m

ILC, now as a staged machine

starting at 250 GeV

o Stage 1: Precision Higgs physics, SM
physics, BSM searches

e Top physics, substantially extended Higgs
and BSM program after energy upgrade

still in discussion in Japan
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The Maln Drlver Llnear Colllders o

ILC, now as a staged machine

-t 1 starting at 250 GeV

) o Stage 1: Precision Higgs physics, SM

| E— physics, BSM searches

——TT e Top physics, substantially extended Higgs
1 - and BSM program after energy upgrade

Compact Linear Collider (CLIC) ;fﬁ"". _ 4
# WEEEE 380 GeV - 11.4 km (CLIC380) / y

© BN 1.5TeV-29.0km (CLICT500)
0 3.0TeV-50.1km (CLIC3000) = 4

i

CLIC, a staged machine reaching into the

multi-TeV region g T p ‘

starting at 380 GeV Ve e

o Stage 1: Broad precision Higgs, top and
SM program, BSM searches in stage 1

* Extended BSM and Higgs program with
energy upgrades, up to 3 TeV

one of the options for CERNs future
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Physics: Higgs @ CLI - AR

 Understanding the potential for precision Higgs physics
the study here (CLIC @ 350 GeV):

Hadronic decays of the
Higgs boson:
H -> bb, cc, gg

hard or even impossible
at the LHC
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PhD Thesis Marco Szalay
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Physics: Higgs @ CLIC R én

 Understanding the potential for precision Higgs physics
the study here (CLIC @ 350 GeV): o)

L L LLLL

Hadronic decays of the c
Higgs boson: T )
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e Taking projected uncertainties from full detector simulations

Decay Statistical uncertainty
Higgsstrahlung (%) WW-fusion (%) (%
- S CLICdp o 350 GeV
H — bb 0.86 eV 1.9 = 1.2 model independent 0+ 1.4 TeV
H — ¢ 14 390 Ge 26 % i e +3TeV
H 1 ©
— gg 6 10 o
U) -
=
... and combining them with many other =
0
O

studies at the three CLIC energy stages in a

global fit \

results in sub-1% - level precision for key
couplings in a model-independent framework 08 |-

few per-mille when using the “kappa framework”

Higgs Physics at CLIC: EPJC 77, 475 (2017)
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Physics: The Top Threshold | "'E LN GED

e Understanding the physics potential of a top threshold scan in e+e- colliders - taking
Into account latest theory uncertainties

Ap A;Z}‘f
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e Understanding the physics potential of a top threshold scan in e+e- colliders - taking
Into account latest theory uncertainties
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e Understanding the physics potential of a top threshold scan in e+e- colliders - taking
Into account latest theory uncertainties
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Physics: The Top Threshold
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Physics: The Top Threshold ,,l,g NG

e Understanding the physics potential of a top threshold scan in e+te- colliders - taking

into account latest theory uncertainties & 407 -~ — — 11 "
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e Understanding the physics potential of a top threshold scan in e+te- colliders - taking
iInto account latest theory uncertainties
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* Years of development on various technological details of scintillator-based highly

granular hadronic calorimeters are now being put to a concrete test:
The CALICE AHCAL Technological prototype
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* Years of development on various technological details of scintillator-based highly

granular hadronic calorimeters are now being put to a concrete test:
The CALICE AHCAL Technological prototype

Scintillator tiles for direct readout with SiPMs
original developments at MPP, then Mainz
detailed tests at MPP
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CALICE: Towards a Technological Prototype CAu(ed

* Years of development on various technological details of scintillator-based highly
granular hadronic calorimeters are now being put to a concrete test:
The CALICE AHCAL Technological prototype

Scintillator tiles for direct readout with SiPMs '_
original developments at MPP, then Mainz
detailed tests at MPP

Combined with integrated electronics |
(DESY, ASICs from OMEGA)

c' n&"
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* Years of development on various technological details of scintillator-based highly

granular hadronic calorimeters are now being put to a concrete test:
The CALICE AHCAL Technological prototype

original developments at MPP, then Mainz
detailed tests at MPP

Combined with integrated electronics o
(DESY, ASICs from OMEGA) |

Automatic wrapping
and placing of tiles
(UHH, Mainz)
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* Years of development on various technological details of scintillator-based highly

granular hadronic calorimeters are now being put to a concrete test:
The CALICE AHCAL Technological prototype

original developments at MPP, then Mainz
detailed tests at MPP

Combined with integrated electronics
(DESY, ASICs from OMEGA) |

— «

Automatic wrapping
and placing of tiles
(UHH, Mainz)

Inserted in non-magnetic precision absorber
structures (MPP)
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e Tests of a compact “em prototype) with
electrons in fields up to 3T in summer

* Proof of principle of power pulsing in
strong magnetic fields: Involved the
construction of “magnet-safe” power
distribution at MPP

Future Detectors Frank Si i @ q
/o Project Review, December 2017 rank Simon (fsimon@mpp.mpg.de) 10
#By=1



e Tests of a compact “em prototype) with
electrons in fields up to 3T in summer

* Proof of principle of power pulsing in
strong magnetic fields: Involved the
construction of “magnet-safe” power
distribution at MPP

Future Detectors
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- CALICE AHCAL

Electrons
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e oo L e ——— 20GeV Magnet Off
5 5 5 —— 20GeV Magnet On
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CALICE: Test Beams, Test

e Tests of a compact “em prototype) with
electrons in fields up to 3T in summer

* Proof of principle of pei—tai
strong magnetic fields !‘_
construction of “magniiiiiR
distribution at MPP |

Christian Graf
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CALICE: Ene

rgy Reconstruction & PFA CALi(ed
e Studying energy resolution in a “real-world”
setting: A combined system of

SiW ECAL, Scintillator/FE HCAL, Tail Catcher

e Exploiting granularity: Local energy density can be
used to improve energy resolution with software
compensation methods

el o

‘‘‘‘
ol
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CALICE: Energy Reconstruction & PFA CAL: C:
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Oreco/ E reco

* Local software compensation: each “hit” is weighted according to its amplitude

o
w

0.2

0.1

Ap ﬂy?}‘f

e weights are energy dependent: Needs first estimate of cluster energy

determined w/o0 SC methods

B CERN & FNAL TB, Fit: a/\E/GeV ® b ® 0.18 GeV/E
-o- Standard Reco.: a=(54.25+0.13)% b=(4.6+0.05)%
~+ECAL SC: a=(51.58+0.17)% b=(3.52+0.07)%

-+ HCAL SC: a=(46.58+0.16)% b=(3.2+0.07)%
-o-Full SC: a=(42.55+0.14)% b=(2.5+0.07)%

Future Detectors
Project Review, December 2017

JINST 7 P09017 (2009)

 New study with full detector system
(SiIW ECAL + AHCAL + TCMT)

» SC in ECAL alone up to 8%
improvement

» SC in HCAL alone up to 23%
improvement

» Full SC up to 30% improvement, for a
stochastic term of 42.5% and a
constant term of 2.5%

Yasmine Israeli, CAN-058 (2017)
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* Local software compensation: each “hit” is weighted according to its amplitude

e weights are energy dependent: Needs first estimate of cluster energy

determined w/o SC methods JINST 7 P09017 (2009)
3035 | | L | L | L | L | I | I | I
4 , ., Fit: a/l E/GeV : e :
CERNE AL TS, i alEGel 00 2 Ban e + New study with full detector system

—@— SC Reco. Data (FTFP): a=39.6+0.16% b=4.72+0.05%
—@— SC Reco. Data (QGSP): a=39.23+0.16% b=4.85:0.05%

(SIW ECAL + AHCAL + TCMT)

oE § » SCin ECAL alone up to 8%
0.2 —  improvement
0.15F- 1 » SC in HCAL alone up to 23%
§ § improvement
0'15 o 1 » Full SC up to 30% improvement, for a
005 ~  stochastic term of 42.5% and a
Qbbb e bienu sl L 1d - constant term of 2.5%
Hot off the press: Using MC - trained soft%&ﬁ?éw
compensation on data - discrepancy at higher Yasmine lsraeli, CAN-058 (2017)

energy reflects issue in reproduction of resolution
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CALICE Energy Reconstructlon & PFA

* |Integrating software compensation in particle flow reconstruction
e Full simulations using the ILD detector concept for GEANT4
e Areas of possible benefits:

38 GeV ‘.‘ ‘_‘ 1scev  Reclustering: association of calorimeter
energy to charged tracks, making use of track
12 GeV 3?

‘lp‘ 32 GeV and cluster energy - profits from better energy
Final energy sum: Profits from improved

estimates
measurement of neutral hadrons

30 GeV Track$

g R
Neutral hadron Photon. ~ Charged hadror

Future Detectors . .
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* |Integrating software compensation in particle flow reconstruction

e Full simulations using the ILD detector concept for GEANT4

transfer software compensation algorithm and training
strategies from CALICE to full ILD detector simulations

em sub showers (in shower core) weighted less
than hadronic periphery

ECAL not included: standard
reconstruction used

Future Detectors . .
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* |Integrating software compensation in particle flow reconstruction

e Full simulations using the ILD detector concept for GEANT4

transfer softv
strategies 1

em sub she
than hadro

ECAL not included: star
reconstruction used

Future Detectors
[ Project Review, December 2017
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 First tests of timing feature of new AHCAL electronics: partially instrumented tungsten
absorbers, prototype detector elements with different scintillator designs

~1.5A/15 X0 *

Christian Graf

Future Detectors Frank Si fsi @ q
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 First tests of timing feature of new AHCAL electronics: partially instrumented tungsten
absorbers, prototype detector elements with different scintillator designs

Trigger signal
I

Muon Hit Time Distribution

MIP time stamping on the 5.5 ns
level per cell (given by limitations of
test beam mode of electronics)

........................................................................................................... .,.

‘o @ i i i : : ; iE
-------------- .. . ...'.Q..‘-..-‘.....—:

DO NBD
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OO —t —d
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CALICE Epr0|t|ng New Capabllltles Tlmlng @@9

 First tests of timing feature of new AHCAL electronics: partially instrumented tungsten
absorbers, prototype detector elements with different scintillator designs

Trigger signal
I

Hittime - TO time, normalized to event

(é) _I T | T T T T l T T T T l T T T Pion 70Gev
= : ; : QGSP_BERT_HP
R T £ NN SER— — — QGSP_BERT
o F o 5 5 — FTFP_BERT_HP
P —— FTFP_BERT
;GE) B | 5 5 — QBBC
|_|CJ1O_1 g_ """" """""""""""""" """""""""" —— QGSP_BIC_HP
Y B | | — QGSP_BIC MIP time stamping on the 5.5 ns
i level per cell (given by limitations of
1072
test beam mode of electronics)
| : : , o
1073 ,'I ---\clszLil(CE AHGAL— ------------------- e H S et it Extended time structure in
' ork in progress 5 ; ; . : :
| | I | | | | I | | | | I | | | | I | | | | I | | | | hadronIC Showers = prlmarlly due
0 100 200 300 400 500 . .
Hit Time [ns] to neutrons: Can this be exploited
Christian Graf in software compensation?
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Commissioning of SuperKEKB: CLAWS

« Scintillator tiles developed for CALICE, coupled to fast sampling readout with very
deep buffers used to monitor injection background in SuperKEKB

Phase I:

Took data Feb -

June 2016 during |
first commissioning
of accelerator

Miroslav Gabriel, Hendrik Windel
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Commissioning of SuperKEKB: CLAWS

« Scintillator tiles developed for CALICE, coupled to fast sampling readout with very
deep buffers used to monitor injection background in SuperKEKB
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- AN, NG/ \ y

Took data Feb -

N
o)
o

June 2016 during
first commissionir
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0 i § 35¢ el el
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L 0 = 257 3 -
© | o F ]
o 1501 © 204 1 -
O i S 150 | 1]
S 3 10; ' |11 Machine-lattice induced
< 100 B sl | 11 .
Q i o il | 1. I []1 ] time structure observed,
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C 5ol Time [us] |
O ] 1 background over ~ 0.5 ms
O_ ML ¥ ol L e ooy ]
0 500 1000 1500 2000
Miroslav Gabriel, Hendrik Windel Time [us]
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« Scintillator tiles developed for CALICE, coupled to fast sampling readout with very
deep buffers used to monitor injection back_qroundin SuperKEKB

Phase IlI:
From March 2018,
with colliding beams

Miroslav Gabriel, Daniel Heuchel, Hendrik Windel

Future Detectors
Project Review, December 2017
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y Phase | CLAWS system
" adapted to the
requirements for
installation as part of the
BEAST Il vertex detector

Frank Simon (fsimon@mpp.mpg.de)
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Phase

_ e S

CLAWS: Towards the Second

« Scintillator tiles developed for CALICE, coupled to fast sampling readout with very

deep buffers used to monitor injection background in SuperKEKB

2 o Phase | CLAWS system
adapted to the
requirements for
installation as part of the
BEAST Il vertex detector

AT Distribution

Phase IlI:
From March 2018,
with colliding beams

» 3000 Data and Gaussian Fit
.0:’ — Entries 6000
E B Mean -2.969¢-010
2500 - RMS 7.072e-010
— Underflow 85
: Overflow 32
B Integral 5883
2000 - %2 / ndf 34.49/10
B Prob 0.0001526
Extensive calibration: 4 ladders 1500/ Corsnt s
with 8 sensors each calibrated, - Sgma___66620:010:2 67176012
MIP time resolution ~ 400 ps 10

500 \

0: T R '//1 T B th[ [ [ 6)(109
: . . . - -6 -4 -2 0 2 4
’ ’ Time[ns]
Miroslav Gabriel, Daniel Heuchel, Hendrik Windel

Future Detectors . .
% Project Review, December 2017 Frank Simon (fsimon@mpp.mpg.de) 17
rBy=t



CLAWS: Towards the Second

o Scintillator tiles developed for CALICE, coupled to fast sampling readout with very
deep buffers used to monitor injection background in SuperKEKB
| 4 Phase | CLAWS system
adapted to the
requirements for
installation as part of the
BEAST Il vertex detector

Phase IlI:
From March 2018,
with colliding beams

& .'_‘_—-*—
C . \.-654 Youzee -5 ) Yomeer .45 -
N N = AL ve 25928 .
o PR T R Yo
~ —i Tt e f ettt 2 T
g 3

Installed at KEK in Fall

Ready for beam in 2018

Miroslav Gabriel, Daniel Heuchel, Hendrik Windel
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Beyond Colliders: The DUNE Near Detector

1300 km
< >

South Dakota

Sanford

Underground
Research
Facility

Chicago

Fermilab

——————————————
-
T : i
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Beyond Colliders: The D

&

1300 km
<€ >
South Dakota Sanford Chicago
Underground Fermilab
Research

/4

Facility __

ECAL

N

3D SuperFGD R b |

R volume of system in magnet:
Tracker
~45x45x7Tms

e a multi-component near detector to constrain the neutrino source flux as a key part of
the oscillation measurements, and to study neutrino interactions
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Beyond Colliders: The DUNE Near Detector

Sanford . > - N Chica g0
Underground s R vaeaas T Fermilab

Research P
Facility __ s

high-intensity v ‘, Mtk
beam, showing e
one spillof 10 s el

w/o interactions
in rock/dirt, NN S E—
infrastructure  ~~ Tracker

S Ty

Vol e UIbychlll .n magnet:
~45x4.5Xx7Tms3
e a multi-component near detector to constrain the neutrino source flux as a key part of

the oscillation measurements, and to study neutrino interactions

N\

Future Detectors
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» Informally exploring the potential of highly granular CALICE - like technologies for the
DUNE Near Detector ECAL

 An area where the ECAL can go beyond
initial plans would be the capability to
associated m0s to neutrino interaction
vertices in the tracking detector

ECHL

Lorenz Emberger
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» Informally exploring the potential of highly granular CALICE - like technologies for the
DUNE Near Detector ECAL

 An area where the ECAL can go beyond < A key challenge: low energies - typical

initial plans would be the capability to 19 energy a few 100 MeV
associated % to neutrino interaction
. | . 500 MeV n%, 10 cm from calo SCaiEven
vertices in the tracking detector ches
Veans 1
S S
RMS z 6.
Y

Lorenz Emberger
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» Informally exploring the potential of highly granular CALICE - like technologies for the

DUNE Near Detector ECAL

 An area where the ECAL can go beyond
initial plans would be the capability to
associated % to neutrino interaction

vertices in the tracking detector

ECHL

Lorenz Emberger

Ap ﬂy?}‘f

Future Detectors
Project Review, December 2017

500 MeV 1%, 10 cm _from calo

* A key challenge: low energies - typical
1o energy a few 100 MeV

| ECalEvent1

16

14

12

10

=
=—|

|

GEANT4 simulations

10 origin reconstruction
300 MeV 19, 1 m from calo
DUNE ND CDR sampling
2 X 2 cmz2 cells

3D deviation from gun posi

Entries

Mean 98.06 = ¢

RMS 118 = 3.

|
100

0

reco - true pos. [mm]

mean offset: 60 mm
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o Started exploring technological options to achieve high granularity while meeting
sampling constraints imposed by energy resolution goals and overall channel count
limitations

e Strongly builds on synergies with CALICE activities
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o Started exploring technological options to achieve high granularity while meeting
sampling constraints imposed by energy resolution goals and overall channel count

limitations

e Strongly builds on synergies with CALICE activities

Individual tiles as in AHCAL
may be a viable option in
key regions of the detector

Future Detectors
Project Review, December 2017
JATRAY S 3
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o Started exploring technological options to achieve high granularity while meeting
sampling constraints imposed by energy resolution goals and overall channel count

limitations

to ‘FEE
A

e Strongly builds on synergies with CALICE activities

Individual tiles as in AHCAL L/PL\ ﬁ{

may be a viable OptIOﬂ N WWM/\/\/\M

— =

/N’f
e
__
&/_\

key regions of the detector ‘/@ -

1 éig,\ AAMA/\/\/)/‘/I/\/'\/\/'\/\/‘\——

Orthogonal crossed strips, with embedded
WLS for light collection, SiPM readout on
both ends, strip segmentation potentially
with “megatile” solution
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o Started exploring technological options to achieve high granularity while meeting

sampling constraints imposed by energy resolution goals and overall channel count

limitations g s
7

e Strongly builds on synergies with CALICE activities

— S _,\Wj[ —_
Individual tiles as in AHCAL {/@ /J — { —R\ —__ I_F_\j

— AN j .
may be a viable option in WWM/\/\/\/\:A D e e =
key regions of the detector ‘_JP;\ /J —~ {__,@ ﬁ[}m/ | r[_//;_,\j

W" A/'M/l/\/\/)/‘/l/\/\/\/\/\/\-— 114/1/'/\ ﬂ/'ﬂﬂ/l/\/\ﬂ/‘/l/\/\/\/\/\/\—

Orthogonal crossed strips, with embedded
WLS for light collection, SiPM readout on
both ends, strip segmentation potentially
with “megatile” solution

Currently studying first prototype scintillator
elements in laboratory - will also make use of
activities on PEN together with LEGEND group
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o Started exploring technological options to achieve high granularity while meeting

sampling constraints imposed by energy resolution goals and overall channel count

limitations g s
7

e Strongly builds on synergies with CALICE activities

Individual tiles as in AHCAL ‘JP;\JJ ‘ R\ — L/’_\;L

may be a viable option in ——

key regions of the detector L/;ij ~ ’ m

Orthogonal crossed strips, with embedded
WLS for light collection, SiPM readout on
both ends, strip segmentation potentially
with “megatile” solution

Currently studying first prototype scintillator
elements in laboratory - will also make use of
activities on PEN together with LEGEND group
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* The next year(s) are highly important for future large-scale projects in HEP: Decisions
on future directions expected in the framework of the European Strategy Process:
Input by end of 2018, community meeting May 2019, Conclusions May 2020
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e The next year(s) are highly important for future large-scale projects in HEP: Decisions
on future directions expected in the framework of the European Strategy Process:
Input by end of 2018, community meeting May 2019, Conclusions May 2020

e Concrete answer on ILC expected from Japan in 2018

e Extensive input from CLIC, with thoroughly studies physics case, optimised detector
concept and well-developed machine concept for a staged implementation
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e The next year(s) are highly important for future large-scale projects in HEP: Decisions
on future directions expected in the framework of the European Strategy Process:
Input by end of 2018, community meeting May 2019, Conclusions May 2020

e Concrete answer on ILC expected from Japan in 2018

e Extensive input from CLIC, with thoroughly studies physics case, optimised detector
concept and well-developed machine concept for a staged implementation

* The Future Detector group is a well-established and visible contributor to this process
e Physics studies for future e+te- colliders

o Calorimetry in CALICE, Detector optimisation & reconstruction algorithms
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e The next year(s) are highly important for future large-scale projects in HEP: Decisions
on future directions expected in the framework of the European Strategy Process:
Input by end of 2018, community meeting May 2019, Conclusions May 2020

e Concrete answer on ILC expected from Japan in 2018

e Extensive input from CLIC, with thoroughly studies physics case, optimised detector
concept and well-developed machine concept for a staged implementation

* The Future Detector group is a well-established and visible contributor to this process
e Physics studies for future e+te- colliders

o Calorimetry in CALICE, Detector optimisation & reconstruction algorithms

* Applications of CALICE technologies closer to the “real axis”:
e Background measurements in SuperKEKB - key for PXD operations in Belle |l
o Exploring options for the electromagnetic calorimeter of the DUNE Near Detector

o Key aspects of near detector concept to be defined by mid 2018

Fi D
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INFN Milano, November 2017

Extras

Frank Simon (fsimon@mpp.mpg.de)




@D 380 GeV - 11.4 km (CLIC380)
S Drive/main beam injector
B LHC - existing infrastructure

Geneva
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o Jets consist of a mix of particles

e typically 60% charged hadrons, 30% photons, 10% neutral hadrons

< “classical” calorimeter-only reconstruction is driven by calorimeter resolution for
hadrons
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o Jets consist of a mix of particles

e typically 60% charged hadrons, 30% photons, 10% neutral hadrons

< “classical” calorimeter-only reconstruction is driven by calorimeter resolution for
hadrons

The PFA idea: reduce influence of poor hadronic resolution
Y — E- oammll F
°* eese **

%o
°

y () : L] y : ]
2 et o
% “

Ejer= EecaL T Encal Ejer= Errack +E, + E,

+
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4.
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o Jets consist of a mix of particles

e typically 60% charged hadrons, 30% photons, 10% neutral hadrons

< “classical” calorimeter-only reconstruction is driven by calorimeter resolution for
hadrons

The PFA idea: reduce influence of poor hadronic resolution
Y — E- oammll F
°* eese **

%o
°

y () : L] y : ]
2 et o
% “

Ejer= EecaL T Encal Ejer= Errack +E, + E,

+
Jt e o

:'o'noo

4.

For best results: high granularity in the calorimeters to correctly separate showers

~ The level of mistakes, “confusion”, determines the achievable jet energy
1\ resolution, not the intrinsic resolution of the calorimeters!
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PFA: Not just Jet Energy Resolution

e Granularity is not just beneficial for resolution: Opens the door for pattern-based
rejection of background - even more powerful with the addition of timing

pattern recognition
& timing cuts

. Ektensively studied at CLIC: pile-up of yy -> hadrons background, combined with
0.5 ns bunch - to - bunch spacing

e Very relevant for hadron colliders - reflected in upgrade plans of CMS
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Under the Hood Partlcle Flow Algorlthms

ConeClustering
Algorithm

Topological

Assoc_iation Cone Back- Looping
Algorithms associations scattered tracks
tracks

Track-Cluster
Association ‘ ‘
Algorithms 38 GeV ‘. ‘. 18 GeV

12 GeV 3%.‘ %{ 32 GeV

30 GeV Track$

Cluster first ——xg
layer position . * .

Reclustering
Algorithms

o

o

o

N

<

Al

© Fragment
> Removal
< 3 GeV Algorithms
C

S 6Ge

=

2 9Ge

= Construction
= Layers inclose Fraction of energy A|gorithms

contact in cone
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e Sophisticated pattern recognition in calorimeters to correctly assign calorimeter
energy to particles seen in tracker: Imaging calorimeters

= Granularity goals defined by hadronic shower physics: Segmentation finer than the
typical structures in particle showers

< Xo/ pm drive ECAL and HCAL (electromagnetic subshowers)
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e Sophisticated pattern recognition in calorimeters to correctly assign calorimeter
energy to particles seen in tracker: Imaging calorimeters

= Granularity goals defined by hadronic shower physics: Segmentation finer than the
typical structures in particle showers

< Xo/ pm drive ECAL and HCAL (electromagnetic subshowers)

NB: Beét s‘eparation for nérrow sho;/vés
| particularly important in ECAL |
<~ Use W in ECAL!

|

;D;epends on material:
e inW: Xo~3mm,pm~9mm |
* inFe: Xo~20 mm, pm~ 30 mm |

When adding active elements: ~ 0.5 cms3 segmentation in ECAL, ~ 3 - 25 cm3 in HCAL

<~ 01078 cells in HCAL, 108 cells in ECAL for typical detector systems!
» fully integrated electronics needed
» requires active elements that support high granularity and large channel counts
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o Particle Flow Performance has been extensively studied in full detector simulations in

the context of Linear Colliders

10

8
= 6
B,
LU
>
@B
c 4
)
S
@/2
Lo
(Q\|
©
<):O
=
prd

Ap Ay?}‘f

™ |
Y
o
1

—— Particle Flow (ILD+PandoraPFA)
S Particle Flow (confusion term)
FRRRIEL Calorimeter Only (ILD)

“i 50 % /\E(GeV) @ 3.0 %
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o Particle Flow Performance has been extensively studied in full detector simulations in
the context of Linear Colliders

* At low energy resolution dominates - in

\ _ _l._Totall ---ﬂ--lOther | _ particular the HCAL resc.>lution
i -=- Resolution ~o- Leakage 4 * At higher energy confusion takes over
I —-+-- Confusion 1 * depends on calorimeter granularity,
3 [ ] N capability of pattern recognition and
< ‘ - algorithm quality
a L _
32 Cwe i 4 ; e
e [ S T T 1 | NB: The point where confusion takes
- o ., 1 | over depends on the detector
1 F g R o (granularity, radius, tracker details) and
: e o : on the algorlthm'
N T N B A S
0 50 100 150 200 250

E e1/GeV

M. Thomson, NIM A611, 25 (2009)
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e Very detailed study in the context of the CLIC detector optimisation (J. Marshall et al.) -

to understand ECAL requirements
5 —r—r e Clear dependence on ECAL cell size -

I I 1 I 1 1 I 1 1 1 I I 1 1 I 1 I 1 1 1 1
confusion for close-by em showers
iIncreases with decreasing granularity

default PFA

W
I I I I I I L I I I I I I I I I I I

LL
\6 2 — 45 GeV Jets
% — 100 GeV Jets
(D — ScW — 180 GeV Jets
2 ------ Siw — 250 GeV Jets
m 1 1 I 1 1 I 1 1 1 I 1 1 1 1 I 1 1 1 1 I
0 5 10 15 20 25
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Understandlng Granularlty Requwements ECAL

e Very detailed study in the context of the CLIC detector optimisation (J. Marshall et al.) -

to understand ECAL requirements
5 ——r e Clear dependence on ECAL cell size -

1 I 1 1 1 1 I 1 1 I 1 I 1 1 I 1 I 1 1 1 1
confusion for close-by em showers
iIncreases with decreasing granularity

cheated photons

» Cheating photon clustering strongly
reduces the cell-size dependence

w
I I I I I I | L I | I I I I I I I I I

05 o
% o(?c;tg3 (8 %% og&go (8
T - [:t> -
\'é 2 — 45 GeV Jets Y
U) e : 100 GzV Jztz
2 """ zn;\//v — ;23 gez je:s
m 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

0 S 10 15 20 25
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equirements: ECAL

e Very detailed study in the context of the CLIC detector optimisation (J. Marshall et al.) -

to understand ECAL requirements
5 —r—r e Clear dependence on ECAL cell size -

1 I 1 I I 1 I I 1 I 1 I I 1 1 1 I 1 1 1 I
confusion for close-by em showers
iIncreases with decreasing granularity

cheated photons + neutral had.

» Cheating photon clustering strongly
reduces the cell-size dependence

W
I I I I I I | | I I I I I I I I I I I

ooooo% 003&%%% ooo%% ooc?&%og(g
°0 Go o ©0 ggo o
Ta R 1::> ®
\'é 2 — 45 GeV Jets Y
2 PR sy 7
E | T I'S‘W —TSOGGVJG‘S | e Cheating neutral hadrons further
1o 5 10 15 20 25 improves resolution (does not depend
ECAL Cell Size [mm] significantly on ECAL)
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Understandlng Granularlty Requwements ECAL

e Very detailed study in the context of the CLIC detector optimisation (J. Marshall et al.) -

to understand ECAL requirements

N — » Clear dependence on ECAL cell size -

confusion for close-by em showers
iIncreases with decreasing granularity

cheated photons + neutral had.

» Cheating photon clustering strongly
reduces the cell-size dependence

90

o
SIS

)/ mean_(E) [%]

W
I I I I I I | | I I I I I I I I I I I

58 &9““@"%?’ :ﬁ% OO@&‘%’?%
y Yooy
‘é 2 — 45 GeV Jets Y
2 oon — 1a0cev et 7
E N ST iSi:N. .T?SO.GTV.MT | e Cheating neutral hadrons further
0 5 10 15 20 25 improves resolution (does not depend
ECAL Cell Size [mm] significantly on ECAL)

w ~ B &f%%é e oo@&i:if "

| Target ECAL cell size < 10 x 10 mm? N R = B

ﬁ Wlth full analog mformatlon In each cell : fg}/
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equirements: HCA

e Similar studies also performed in the HCAL - with less sophistication in the
disentanglement of different effects, since photons do not enter the HCAL in a

'OE' 4 | | | | | | | | | | | | |
’LIT_.
R
S i
o)
g |
W35
S :
(é) I —— 45 GeV jets
o B —— 100 GeV jets
- —— 180 GeV jets
- —— 250 GeV jets
3 |
i { ﬂ
- 1
| ] ] ] | ] ] ] | ] ] ] | ]

Ap ﬂy?z’f

realistic detector geometry

0 20 40 60

Nchannels
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equirements: HCA

e Similar studies also performed in the HCAL - with less sophistication in the
disentanglement of different effects, since photons do not enter the HCAL in a
realistic detector geometry

S I L L B T
w- | ]
%8 i | plastic scintillator tiles
= | ] 30 x 30 mm?
c/)8 i —— 45 GeV jets 7
% - —— 100 GeV jets ]
- —— 180 GeV jets ]
- —— 250 GeV jets 7
3l _
! T ] Target: HCAL cell size < 30 x 30 mm?
i i ﬂ : | with full analog information in each cell
(') 1 2'0 1 4'0 — 6'0 1 (substantially smaller when using
N, [Milions] digital / semi-digital readout)
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e Construction of a full hadronic prototype ongoing - 24k channels - ready in 2018

 Demonstrates technological solutions for a collider detector, addresses issues of
mass production and scalability
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e Construction of a full hadronic prototype ongoing - 24k channels - ready in 2018

 Demonstrates technological solutions for a collider detector, addresses issues of
mass production and scalability

automatic wrapping of injection-molded scintillator tiles
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e Construction of a full hadronic prototype ongoing - 24k channels - ready in 2018

 Demonstrates technological solutions for a collider detector, addresses issues of
mass production and scalability

automatic wrapping of injection-molded scintillator tiles

new generation
of ASICs
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Provmg Scalablllty The Next AHCAL Prototype

e Construction of a full hadronic prototype ongoing - 24k channels - ready in 2018

 Demonstrates technological solutions for a collider detector, addresses issues of
mass production and scalability

automatic wrapping of injection-molded scintillator tiles

new generation
- of ASICs

60 GeV e, in 1.5 T field

i
L
YL

| first test with
s smaller
~ prototype
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CALICE and Linear Colliders

e CALICE is one of the “gluons” of Linear Collider detector concepts
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CALICE and Linear Colliders

e CALICE is one of the “gluons” of Linear Collider detector concepts
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All LC detector concepts build on CALICE calorimeters:
e |ILD: ECAL (Si or Sc) + HCAL (Sc or SD)

e SiD: HCAL (Sc or D)

e CLIC: ECAL (Si or Sc) + HCAL (Sc)
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All LC detector concepts build on CALICE calorimeters:
e |ILD: ECAL (Si or Sc) + HCAL (Sc or SD)

e SiD: HCAL (Sc or D)

e CLIC: ECAL (Si or Sc) + HCAL (Sc)
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The CERN Neutrino Platform

AN

W

2024: Physics Data
Begins (20 kt)

2026: Neutrino ND Installation: 2025-2026.
Beam Available .
to be ready for first beam
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Decision on magnet concept (dipole or KLOE solenoid): 02/2018

Decision on tracker concept (STT or HPTPC, also on SuperFGD): 04/2018
Draft of Near Detector CDR: 04/2019; review 08/2019

Draft of Near Detector TDR: 04/2020

DOE Review of Near Site & Detector: 08/2020

= Global detector design being fixed in the coming months
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