
GERDA and LEGEND

Low-Background Physics with

HPGe Detectors

Oliver Schulz

oschulz@mpp.mpg.de

MPP Project Review, December 17, 2017



Oliver Schulz � GERDA and LEGEND Outline 1

Outline

Introduction

GERDA

Collaboration and Experiment
Phase-II Results
Background Reduction with Deep Learning

LEGEND

Collaboration and planned Experiments
HPGe Detector Research, MPP (GeDet)
Cosmogenic Background Measurements, MPP (MINIDEX)
Novel Active Construction Materials, MPP (PEN)

Summary



Oliver Schulz � GERDA and LEGEND Introduction 2

0νββ Decay
I Single β decay not allowed for some isotopes,
only double β decay

I Also 0νββ decay, due to Majorana-ν (ν = ν̄)?

E

2νββ

0νββ

Emax

(
T 0ν
1/2

)−1

= G (Q,Z ) |Mnucl|2 〈mee〉2

I Discovery of 0νββ decay would
I Imply lepton-number violation
I Tell us about nature of ν (Majorana component?)
I Give information about absolute Neutrino mass / hierarchy?
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Low-Background Challenge

I Expected 0νββ decay half lives very long (≥ 1026 years):
Background must be almost zero
(e.g. [Caldwell et al., Phys. Rev. D 96, 073001 (2017)])

I Need high source mass
→ Isotope enrichment

I Need to get rid of radioactive background:
I Cosmic background
→ Need underground location

I Environmental radiation
→ Need excellent shielding

I Radiation from materials used in setup
→ Need very radio-pure materials

I Intrinsic 2νββ background
→ Need good energy resolution
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Why use 76
Ge?

Advantages:

I Source = Detector

I Production of enriched detectors up to 86%
well established (though expensive)

I HPGe has excellent energy resolution,
only way to reduce 2νββ decay background,
also important since sensitivity is

T1/2 ∝ a · ε
√

M·t
b·∆E

(BG-free: T1/2 ∝ a · ε ·M · t)
I Intrinsically pure

Challenges:

I Detector operation under cryogenic conditions

I Cosmic activation of detector material (→ 60
Co and 68

Ge)
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The GERDA Experiment

I Search for 0νββ decay in 76
Ge at Qββ = 2040keV

I Array of isotopically enriched HPGe detectors,
suspended in liquid Argon

I Ultra-low background setup, located underground at LNGS
(1400 m rock overburden, 3500 m water equivalent)

I Phase I completed successfully,
limit for 76

Ge 0νββ decay: T 0ν
1/2 > 2.1× 1025 yr (90% CL)

I Phase II: Increased active mass, new detector technology
lower background, additional background veto

I Phase II design goals:
I Sensitive to half-life of ≥ 1026 yr with exposure of 100 kg · yr
I Lower background: 1× 10−2 → 1× 10−3 cts/(keV· kg· yr)
I Understand whether technology is suitable for ton-scale

I Current status: Phase II data taking
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Organization

I 19 Member institutes, all in Europe:
https://www.mpi-hd.mpg.de/gerda

I GERDA at MPP:

I Director: Allen Caldwell
I Group leader: Bela Majorovits
I Sta�: Christopher Gooch, Oliver Schulz
I PostDocs: Anna Zsigmond
I PhD Students: Laura Vanhöfer
I MSc/BSc Students: Philipp Holl (�nished),

Barbara Schweisshelm

https://www.mpi-hd.mpg.de/gerda
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The Gerda Setup
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GERDA Phase-II Detector Array

I 7 string, 40 detectors in total:
I 7 enriched Coax-type (15.8 kg)

I 30 enriched BEGe-type (20 kg)
I 3 natural Coax-type (7.6 kg)

I Array enclosed by LAr veto

I Operational since Dec. 2015

[arXiv:1711.01452]
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LAr Scintillation as Background Veto

I Liquid Argon scintillates: High potential for
for background reduction (esp. γ)
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LAr Instrumentation

Fiber Cylinder

Bottom PMTs

Top PMTs

I Instrumentation of
LAr volume
around detectors
as background veto

I 800m WLS-coated
�bers, 90 SiPMs,
16 PMTs

I WLS-coated nylon
mini-shroud
around each detector
string
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Pulse-Shape Discrimination

I PSD: Reject multi-site and surface events
based on detector signal shape

I Methods: A/E (BEGe detectors), ANN (coaxial detectors)
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Background after Vetos and Cuts
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Phase II background index (1930 - 2190 keV):

I Almost pure 2νββ spectrum after LAr veto (600-1300 keV)

I Coax detectors: 2.7+0.8
−1.0 × 10−3 cts/(keV· kg· yr)

I BEGe detectors: 1.0+0.4
−0.6 × 10−3 cts/(keV· kg· yr)

I Background-free up to design exposure 100 kg · yr
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Current Combined Phase I and II Result
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1/2 > 5.1× 1025 yr

(Bayesian)

All limits: 90% CL/CI
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Novel PSD Techniques: Deep-Learning

Input Reproduce
input

Compact
Represent.

Encoder Decoder

I Problem: Low volume of tagged data

I Step 1: Dimensionality reduction via auto-encoder ANN

I Step 2: Classi�er ANN

I Advantages: Little bias, no classi�er calibration

[P. Holl, MSc thesis, MPP, 2017]
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Deep-Learning PSD Performance
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The next step: LEGEND

I Gerda Phase-II sensitivity will scratch inverted hierarchy

I But: Need about 1 ton of enriched 76
Ge to cover it

I Large fractions of GERDA and MAJORANA
plus new (and old) players in the �eld:
New LEGEND collaboration [http://legend-exp.org/]

46 institutes (Europe, USA, China)
I Two Phases:

I LEGEND-200: In GERDA cryostat
I LEGEND-1000: Host-lab search ongoing

[arXiv:1709.01980]

http://legend-exp.org/
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LEGEND at MPP
I Director: Allen Caldwell, group leader: Iris Abt
I Activities:

I HPGe detector research (GeDet): I. Abt
I Sta�: Christopher Gooch, Xiang Liu, Oliver Schulz
I PostDocs: Anna Zsigmond
I PhD students: Lukas Hauertmann, Martin Schuster
I MSc/BSc students: Daniel Wolfrum
I Guest Students 2017: Jinglu Ma, Qiang Du

I Cosmogenic Backgrounds (MINIDEX): B. Majorivits
I Sta�: Anton Empl, Christopher Gooch, Oliver Schulz
I PhD students: Raphael Kneissl
I MSc/BSc students: Oliver Plaul

I Novel Active Construction Materials (PEN): B. Majorivits
I Sta�: Christopher Gooch, Oliver Schulz
I PostDocs: Elena Sala
I PhD students: Connor Hayward
I MSc/BSc students: Simon Eck, Felix Fischer,

Thomas Kraetzschmar
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GeDet: HPGe Detector Research at MPP

I Main focus: Gain better understanding
of detector surface e�ects
and detector pulse shapes in general

I Years of experience with segmented HPGe detectors: ideal
tool to study detector properties

I Now part of MPPs involvement in LEGEND
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Test-Stand Galatea

I Facility for scans of detector surfaces
with α and β radiation and laser

I Important improvements in 2017
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α Radiation E�ect at Passivated Surfaces

I α-scans of top segment of true-coax detector
I Surprise - e�ective dead layer very thin:
10µm for electrons, 12µm for holes

I Observed electron or hole, trapping dependent on radius
I Charge loss can be recovered via other segments

[L. Garbini, Phd thesis, MPP] [NIM-A 858 (2017) 80]
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Surface-Metalization E�ects
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I α/γ-scans over fully and partially metalized segments

I Metalization scheme seems to have almost no e�ect
→ can build low-background detectors
with partial metalization

[L. Hauertmann, MSc thesis, MPP, 2017]
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Test-Stand K2

I Temperature-controlled
cryostat
for HPGe detectors

I 2017: Added
automated scanning stage
(side- and top-scans)
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Charge Loss Beneath Surface Passivation
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I Measurements
with 133

Ba at
passivation area
of segmented
BEGe-detector

I Observed
charge loss at
surprisingly high
interaction depths

I Partial charge
recovery
via segment
signals

[M. Schuster, MSc thesis, MPP, 2017]
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Temperature E�ect on Charge Loss
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I 133
Ba-scans at di�erent temperatures

I Charge loss depth depends on temperature and radius

[J. Ma, guest-student, MPP, 2017]
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Temperature E�ect on Charge Loss
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MINIDEX: µ-Induced Neutrons

I Shallow-underground experiment MINIDEX
measures µ-induced neutron production (at Uni Tübingen)

I Con�rmed neutron de�cit in Monte Carlo
in data with additional neutron detector
(cooperation with Tsinghua University)

I Good run 2017

[Astropart.Phys. 90 (2017) 1-13] [Q. Du, guest-student, MPP, 2017]
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MINIDEX: µ-Induced Neutrons
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[Astropart.Phys. 90 (2017) 1-13] [Q. Du, guest-student, MPP, 2017]
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Active Construction Materials: PEN
I Materials are never as radiopure as we'd like
→ eliminate inactive (non-scintillating) materials:
everything becomes a veto

I Interesting candidate: Polyethylene
Naphthalate (PEN)

I Scintillates (Nakamura et al., 2011),
emits blue light

I Mechanically strong
I Initial radiopurity measurements encouraging
I Originally MPP GERDA activity,

now integrated in LEGEND

I Idea: Encapsulate Ge-detectors in PEN,
also use pen for holder structures

I PEN-Research in cooperation with F. Simon (MPP), TU
Dortmund, Uni Lancaster, ORNL and CTU Prague

[arXiv:1708.09265]
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PEN Injection Molding

I Successfully shaped PEN via injection molding (at LKT TU
Dortmund and Fraunhofer ICT)

I Currently using commercial material, but �rst successful
PEN synthesis at ORNL and NUVIA

I Attenuation length still not a good
as we'd like → systematic study
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PEN Emission Spectrum

I PEN emission spectrum around 430 nm:
Directly accessible with PMTs and SiPMs,
needs no wavelength shifter
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Mechanical Properties in Cryoliquids

I Currently measuring mechanical properties of PEN
in liquid nitrogen

I PEN performs very well so far
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PEN Excitation at VUV Wavelengths

[M. Febbraro, ORNL]

I Preliminary: Strong excitation at VUV wavelength
→ wavelength shifter for LAr scintillation light!
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Summary

I Smooth operation of GERDA in 2017,
new data released at TAUP 2017

I Next GERDA data release: Neutrino 2018

I LEGEND collaboration fully formed,
two collaboration meetings in 2017

I GeDet project becomes part of LEGEND,
several important studies completed in 2017,
important upgrades to our setups

I MINIDEX operation continues as planned,
expecting a publication and a Phd thesis in 2018

I PEN project is picking up speed,
material looks increasingly promising,
international partners complementary expertise
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