GERDA and LEGEND Low-Background Physics with HPGe Detectors

Oliver Schulz

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

oschulz@mpp.mpg.de

MPP Project Review, December 17, 2017

Outline

Introduction

GERDA

Collaboration and Experiment Phase-II Results Background Reduction with Deep Learning

LEGEND

Collaboration and planned Experiments HPGe Detector Research, MPP (GeDet) Cosmogenic Background Measurements, MPP (MINIDEX) Novel Active Construction Materials, MPP (PEN)

Summary

(日) (四) (日) (日)

$\mathbf{0}\nu\beta\beta$ Decay

- Single β decay not allowed for some isotopes, only double β decay
- Also $0\nu\beta\beta$ decay, due to Majorana- ν ($\nu = \bar{\nu}$)?

-

ヘロト ヘアト ヘヨト ヘ

$\mathbf{0}\nu\beta\beta$ Decay

- Single β decay not allowed for some isotopes, only double β decay
- Also $0\nu\beta\beta$ decay, due to Majorana- ν ($\nu = \bar{\nu}$)?

• Discovery of $0\nu\beta\beta$ decay would

- Imply lepton-number violation
- Tell us about nature of ν (Majorana component?)
- Give information about absolute Neutrino mass / hierarchy detention in Provided in Provid

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Low-Background Challenge

• Expected $0\nu\beta\beta$ decay half lives very long ($\geq 10^{26}$ years): Background must be almost zero

(e.g. [Caldwell et al., Phys. Rev. D 96, 073001 (2017)])

Low-Background Challenge

► Expected 0νββ decay half lives very long (≥ 10²⁶ years): Background must be almost zero

(e.g. [Caldwell et al., Phys. Rev. D 96, 073001 (2017)])

- Need high source mass
 - \rightarrow lsotope enrichment

Low-Background Challenge

► Expected 0νββ decay half lives very long (≥ 10²⁶ years): Background must be almost zero

(e.g. [Caldwell et al., Phys. Rev. D 96, 073001 (2017)])

- ► Need high source mass → lsotope enrichment
- Need to get rid of radioactive background:
 - Cosmic background
 - ightarrow Need underground location
 - Environmental radiation
 - \rightarrow Need excellent shielding
 - Radiation from materials used in setup
 - ightarrow Need very radio-pure materials
 - Intrinsic $2\nu\beta\beta$ background
 - \rightarrow Need good energy resolution

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Why use $^{76}\mathrm{Ge}?$

Advantages:

- Source = Detector
- Production of enriched detectors up to 86% well established (though expensive)

Why use ⁷⁶Ge?

Advantages:

- Source = Detector
- Production of enriched detectors up to 86% well established (though expensive)
- HPGe has excellent energy resolution, only way to reduce $2\nu\beta\beta$ decay background, also important since $T_{1/2} \propto \mathbf{a} \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$ (BG-tree: $I_{1/2} \propto a \cdot \epsilon \cdot M \cdot t$)

$$(\mathsf{RG}_{\mathsf{free}}, T_{\mathsf{tree}} \propto a \cdot \epsilon \cdot M \cdot t)$$

Why use ⁷⁶Ge?

Advantages:

- Source = Detector
- Production of enriched detectors up to 86% well established (though expensive)

$$T_{1/2} \propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$$
 (BG-free: $T_{1/2} \propto a \cdot \epsilon \cdot M$

Intrinsically pure

Challenges:

- Detector operation under cryogenic conditions

4

Max-Flanck-Institut fur (None-listedog-locks)

(日) (同) (日) (日)

The GERDA Experiment

- Search for $0\nu\beta\beta$ decay in ⁷⁶Ge at $Q_{\beta\beta} = 2040 \, keV$
- Array of isotopically enriched HPGe detectors, suspended in liquid Argon
- Ultra-low background setup, located underground at LNGS (1400 m rock overburden, 3500 m water equivalent)

The GERDA Experiment

- Search for $0\nu\beta\beta$ decay in ⁷⁶Ge at $Q_{\beta\beta} = 2040 \, keV$
- Array of isotopically enriched HPGe detectors, suspended in liquid Argon
- Ultra-low background setup, located underground at LNGS (1400 m rock overburden, 3500 m water equivalent)
- ► Phase I completed successfully, limit for ⁷⁶Ge $0\nu\beta\beta$ decay: $T_{1/2}^{0\nu} > 2.1 \times 10^{25}$ yr (90% CL)
- Phase II: Increased active mass, new detector technology lower background, additional background veto

The GERDA Experiment

- Search for $0\nu\beta\beta$ decay in ⁷⁶Ge at $Q_{\beta\beta} = 2040 \, keV$
- Array of isotopically enriched HPGe detectors, suspended in liquid Argon
- Ultra-low background setup, located underground at LNGS (1400 m rock overburden, 3500 m water equivalent)
- ► Phase I completed successfully, limit for ⁷⁶Ge $0\nu\beta\beta$ decay: $T_{1/2}^{0\nu} > 2.1 \times 10^{25}$ yr (90% CL)
- Phase II: Increased active mass, new detector technology lower background, additional background veto
- Phase II design goals:
 - Sensitive to half-life of $\geq 10^{26}$ yr with exposure of 100 kg $\cdot\,{\rm yr}$
 - Lower background: $1 \times 10^{-2} \rightarrow 1 \times 10^{-3} \text{ cts/(keV·kg·yr)}$
 - Understand whether technology is suitable for ton-scale
- Current status: Phase II data taking

(日) (四) (日) (日)

Organization

- 19 Member institutes, all in Europe: https://www.mpi-hd.mpg.de/gerda
- GERDA at MPP:
 - Director: Allen Caldwell
 - Group leader: Bela Majorovits
 - Staff: Christopher Gooch, Oliver Schulz
 - PostDocs: Anna Zsigmond
 - PhD Students: Laura Vanhöfer
 - MSc/BSc Students: Philipp Holl (finished), Barbara Schweisshelm

(ロ) (部) (主) (主)

nek-Institut für Physil

ax-Planck-Institut für Phys (Norse-Inisocherg-Initiat)

(ロ) (部) (主) (主)

 Planck-Institut f
ür Physi (None-Institut)

(日) (四) (三) (三) (三)

GERDA

7

7

GERDA

¶Δ_FΔ_f≥±± -Planck-Institut für Physil Mone-Heinebeg-Istitut

・ロト ・個ト ・モト ・モト

- ▶ 7 string, 40 detectors in total:
 - ▶ 7 enriched Coax-type (15.8 kg)

(日) (同) (日) (日)

[arXiv:1711.01452]

- ▶ 7 string, 40 detectors in total:
 - ▶ 7 enriched Coax-type (15.8 kg)
 - 30 enriched BEGe-type (20 kg)

イロト イ理ト イヨト イ

- > 7 string, 40 detectors in total:
 - 7 enriched Coax-type (15.8 kg)
 - 30 enriched BEGe-type (20 kg)
 - 3 natural Coax-type (7.6 kg)

ヘロト ヘアト ヘヨト ヘ

[arXiv:1711.01452]

- > 7 string, 40 detectors in total:
 - 7 enriched Coax-type (15.8 kg)
 - 30 enriched BEGe-type (20 kg)
 - 3 natural Coax-type (7.6 kg)

(日) (同) (三) (

Array enclosed by LAr veto

- ▶ 7 string, 40 detectors in total:
 - 7 enriched Coax-type (15.8 kg)
 - 30 enriched BEGe-type (20 kg)
 - 3 natural Coax-type (7.6 kg)

(日) (同) (三) (

Array enclosed by LAr veto

8

 String 1
 String 2
 String 3
 String 4
 String 5
 String 6
 String 7

 Image: Constraint of the string 1
 Image: Constraint of the string 6
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Constraint of the string 1
 Image: Constraint of the string 7
 Image: Constraint of the string 7
 Image: Constraint of the string 7

 Image: Con

- > 7 string, 40 detectors in total:
 - ▶ 7 enriched Coax-type (15.8 kg)
 - 30 enriched BEGe-type (20 kg)

< ロ > < 同 > < 回 > < 回 >

- 3 natural Coax-type (7.6 kg)
- Array enclosed by LAr veto
- Operational since Dec. 2015

[arXiv:1711.01452]

LAr Scintillation as Background Veto

 Liquid Argon scintillates: High potential for for background reduction (esp. γ)

イロト イロト イヨト イヨト

LAr Instrumentation

- Instrumentation of LAr volume around detectors as background veto
- 800m WLS-coated fibers, 90 SiPMs, 16 PMTs

(日) (四) (日) (日)

LAr Instrumentation

- Instrumentation of LAr volume around detectors as background veto
- 800m WLS-coated fibers, 90 SiPMs, 16 PMTs
- WLS-coated nylon mini-shroud around each detector string

(日) (四) (日) (日)

Pulse-Shape Discrimination

 PSD: Reject multi-site and surface events based on detector signal shape

Pulse-Shape Discrimination

- PSD: Reject multi-site and surface events based on detector signal shape
- Methods: A/E (BEGe detectors), ANN (coaxial detectors)

イロト イヨト イヨト イ

Background after Vetos and Cuts

Phase II background index (1930 - 2190 keV):

• Almost pure $2\nu\beta\beta$ spectrum after LAr veto (600-1300 keV)

ヘロト ヘアト ヘヨト ヘ

Background after Vetos and Cuts

Phase II background index (1930 - 2190 keV):

- Almost pure $2\nu\beta\beta$ spectrum after LAr veto (600-1300 keV)
- Coax detectors: $2.7^{+0.8}_{-1.0} \times 10^{-3} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$
- ► BEGe detectors: $1.0^{+0.4}_{-0.6} \times 10^{-3} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$
- Background-free up to design exposure 100 kg · yr

Current Combined Phase I and II Result

All limits: 90% CL/CI

- ▶ Phase I: $T_{1/2}^{0\nu} > 2.1 \times 10^{25} \text{ yr}$
- ► Phase-II:
 - First 10.8 kg·yr unblinded June 2016

[Nature 554 (2017) 47]

 Additional 12.4 kg·yr unblinded June 2017

イロト イポト イヨト イヨト

[arXiv:1710.07776]

Current Combined Phase I and II Result

All limits: 90% CL/CI

- ▶ Phase I: $T_{1/2}^{0\nu} > 2.1 \times 10^{25}$ yr
- ► Phase-II:
 - First 10.8 kg·yr unblinded June 2016

[Nature 554 (2017) 47]

 Additional 12.4 kg·yr unblinded June 2017

[arXiv:1710.07776]

- Phase | plus Phase ||:
 - $T_{1/2}^{0
 u} > 8.0 imes 10^{25}$ yr (Profile likelihood)
 - $T_{1/2}^{0\nu} > 5.1 \times 10^{25}$ yr (Bayesian)

イロト イポト イヨト イヨト

- Problem: Low volume of tagged data
- Step 1: Dimensionality reduction via auto-encoder ANN

イロト イヨト イヨト

[P. Holl, MSc thesis, MPP, 2017]

Auto-Encoder Pulse-Reconstruction

(日) (四) (日) (日)

[P. Holl, MSc thesis, MPP, 2017]

- Problem: Low volume of tagged data
- Step 1: Dimensionality reduction via auto-encoder ANN

イロト イヨト イヨト

[P. Holl, MSc thesis, MPP, 2017]

- Problem: Low volume of tagged data
- Step 1: Dimensionality reduction via auto-encoder ANN
- Step 2: Classifier ANN

GERDA

イロト イヨト イヨト

- Problem: Low volume of tagged data
- Step 1: Dimensionality reduction via auto-encoder ANN
- Step 2: Classifier ANN
- > Advantages: Little bias, no classifier calibration

(日) (同) (三) (

[P. Holl, MSc thesis, MPP, 2017]

Deep-Learning PSD Performance

イロト イヨト イヨト

[P. Holl, MSc thesis, MPP, 2017]

The next step: LEGEND

- Gerda Phase-II sensitivity will scratch inverted hierarchy
- \blacktriangleright But: Need about 1 ton of enriched $^{76}\mathrm{Ge}$ to cover it

The next step: LEGEND

- Gerda Phase-II sensitivity will scratch inverted hierarchy
- \blacktriangleright But: Need about 1 ton of enriched $^{76}\mathrm{Ge}$ to cover it
- Large fractions of GERDA and MAJORANA plus new (and old) players in the field: New LEGEND collaboration [http://legend-exp.org/] 46 institutes (Europe, USA, China)
- Two Phases:
 - LEGEND-200: In GERDA cryostat
 - LEGEND-1000: Host-lab search ongoing

LEGEND at MPP

- > Director: Allen Caldwell, group leader: Iris Abt
- Activities:
 - ► HPGe detector research (GeDet): I. Abt
 - Staff: Christopher Gooch, Xiang Liu, Oliver Schulz
 - PostDocs: Anna Zsigmond
 - PhD students: Lukas Hauertmann, Martin Schuster
 - MSc/BSc students: Daniel Wolfrum
 - Guest Students 2017: Jinglu Ma, Qiang Du
 - Cosmogenic Backgrounds (MINIDEX): B. Majorivits
 - Staff: Anton Empl, Christopher Gooch, Oliver Schulz
 - PhD students: Raphael Kneissl
 - MSc/BSc students: Oliver Plaul
 - Novel Active Construction Materials (PEN): B. Majorivits
 - Staff: Christopher Gooch, Oliver Schulz
 - PostDocs: Elena Sala
 - PhD students: Connor Hayward
 - MSc/BSc students: Simon Eck, Felix Fischer, Thomas Kraetzschmar

GeDet: HPGe Detector Research at MPP

- Main focus: Gain better understanding of detector surface effects and detector pulse shapes in general
- Years of experience with segmented HPGe detectors: ideal tool to study detector properties
- Now part of MPPs involvement in LEGEND

Test-Stand Galatea

- Facility for scans of detector surfaces with α and β radiation and laser
- Important improvements in 2017

・ロト ・ 日本・ ・ 日本・ ・

α Radiation Effect at Passivated Surfaces

- α -scans of top segment of true-coax detector
- ► Surprise effective dead layer very thin: 10µm for electrons, 12µm for holes

LEGEND

(日) (四) (三)

α Radiation Effect at Passivated Surfaces

LEGEND

22

- α -scans of top segment of true-coax detector
- Surprise effective dead layer very thin: 10μm for electrons, 12μm for holes
- Observed electron or hole, trapping dependent on radius

(日)、

Charge loss can be recovered via other segments

[L. Garbini, Phd thesis, MPP] [NIM-A 858 (2017) 80]

Surface-Metalization Effects

• α/γ -scans over fully and partially metalized segments

[L. Hauertmann, MSc thesis, MPP, 2017]

Surface-Metalization Effects

• α/γ -scans over fully and partially metalized segments

► Metalization scheme seems to have almost no effect → can build low-background detectors with partial metalization

[L. Hauertmann, MSc thesis, MPP, 2017]

(日)、(四)、(日)、(日)

Test-Stand K2

- Temperature-controlled cryostat for HPGe detectors
- 2017: Added automated scanning stage (side- and top-scans)

イロト イヨト イヨト イ

Charge Loss Beneath Surface Passivation

[M. Schuster, MSc thesis, MPP, 2017]

- Measurements with ¹³³Ba at passivation area of segmented BEGe-detector
- Observed charge loss at surprisingly high interaction depths
- Partial charge recovery via segment signals

(日) (四) (日) (日)

LEGEND 25

Temperature Effect on Charge Loss

▶ ¹³³Ba-scans at different temperatures

26

Temperature Effect on Charge Loss

- ▶ ¹³³Ba-scans at different temperatures
- Charge loss depth depends on temperature and radius

イロト 不得下 イヨト イヨト

 Shallow-underground experiment MINIDEX measures μ-induced neutron production (at Uni Tübingen)

(日) (同) (日) (日)

[Astropart Phys. 90 (2017) 1-13] [Q. Du, guest-student, MPP, 2017]

MINIDEX: µ-Induced Neutrons

- Shallow-underground experiment MINIDEX measures µ-induced neutron production (at Uni Tübingen)
- Confirmed neutron deficit in Monte Carlo in data with additional neutron detector (cooperation with Tsinghua University)
- Good run 2017

[Astropart Phys. 90 (2017) 1-13] [Q. Du, guest-student, MPP, 2017]

< ロ > < 同 > < 回 > < 回 >

Active Construction Materials: PEN

► Materials are never as radiopure as we'd like → eliminate inactive (non-scintillating) materials: everything becomes a veto

LEGEND

Active Construction Materials: PEN

- ► Materials are never as radiopure as we'd like
 - \rightarrow eliminate inactive (non-scintillating) materials:
 - everything becomes a veto
 - Interesting candidate: Polyethylene Naphthalate (PEN)
 - Scintillates (Nakamura et al., 2011), emits blue light
 - Mechanically strong
 - Initial radiopurity measurements encouraging
 - Originally MPP GERDA activity, now integrated in LEGEND

LEGEND

Active Construction Materials: PEN

- Materials are never as radiopure as we'd like
 - \rightarrow eliminate inactive (non-scintillating) materials:

everything becomes a veto

Interesting candidate: Polyethylene

- Naphthalate (PEN)
 - Scintillates (Nakamura et al., 2011), emits blue light
 - Mechanically strong
 - Initial radiopurity measurements encouraging

(日) (同) (日) (日)

- Originally MPP GERDA activity, now integrated in LEGEND
- Idea: Encapsulate Ge-detectors in PEN, also use pen for holder structures
- PEN-Research in cooperation with F. Simon (MPP), TU Dortmund, Uni Lancaster, ORNL and CTU Prague

LEGEND

28

[arXiv:1708.09265]

PEN Injection Molding

- Successfully shaped PEN via injection molding (at LKT TU Dortmund and Fraunhofer ICT)
- Currently using commercial material, but first successful PEN synthesis at ORNL and NUVIA
- ► Attenuation length still not a good as we'd like → systematic study

PEN Emission Spectrum

 PEN emission spectrum around 430 nm: Directly accessible with PMTs and SiPMs, needs no wavelength shifter

(日)、(四)、(日)、(日)

Mechanical Properties in Cryoliquids

- Currently measuring mechanical properties of PEN in liquid nitrogen
- ▶ PEN performs very well so far

イロト イポト イヨト イ

PEN Excitation at VUV Wavelengths

Preliminary: Strong excitation at VUV wavelength
 → wavelength shifter for LAr scintillation light!

< □ > < 同 > < 三

Summary

- Smooth operation of GERDA in 2017, new data released at TAUP 2017
- Next GERDA data release: Neutrino 2018

Summary

- Smooth operation of GERDA in 2017, new data released at TAUP 2017
- Next GERDA data release: Neutrino 2018
- LEGEND collaboration fully formed, two collaboration meetings in 2017
- GeDet project becomes part of LEGEND, several important studies completed in 2017, important upgrades to our setups

Summary

- Smooth operation of GERDA in 2017, new data released at TAUP 2017
- Next GERDA data release: Neutrino 2018
- LEGEND collaboration fully formed, two collaboration meetings in 2017
- GeDet project becomes part of LEGEND, several important studies completed in 2017, important upgrades to our setups
- MINIDEX operation continues as planned, expecting a publication and a Phd thesis in 2018
- PEN project is picking up speed, material looks increasingly promising, international partners complementary expertise

(日) (四) (日) (日)