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Group Goals

What we do: 
• Take or develop well motivated mathematical models 
(Standard Model, SUSY Theories, Effective Field Theories,...) 
• Produce precise, concrete predictions for high energy colliders 
(LHC, ILC, FCC, ...) 

How we do it: 
• Establish a mathematical understanding of the theory 
• Develop and use state of the art computational tools and techniques  

Why we do it: 
• With our experimental colleagues, we want to test and refine our 

understanding of the fundamental forces 
• E.g: Probing the nature of Electro-weak symmetry breaking, 

constraining the solution space for new fundamental particles and 
interactions
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Project Highlights

Part 1: Calculations 
Triple Higgs coupling effect on h0→bb and h0→τ+τ− in the 2HDM  
[A. Arhrib, R. Benbrik, J. El Falaki, W. Hollik] 
ZA production in vector-boson scattering at NLO QCD [F. Campanario, M. Kerner, D. Zeppenfeld] 
NNLO predictions for Z-boson pair production at the LHC [G. Heinrich, S. Jahn, SJ, M. Kerner, J. Pires] 
NNLO QCD predictions for single jet inclusive production at the LHC [J. Currie, E.W.N. Glover, J. Pires]

Part 2: Precision studies 
NLO and off-shell effects in top quark mass determinations  
[G.Heinrich, A.Maier, R.Nisius, J.Schlenk, M.Schulze, L.Scyboz, J.Winter] 
NLO predictions for Higgs boson pair production matched to parton showers  
[G. Heinrich, SJ, M. Kerner, G. Luisoni, E. Vryonidou] 
Parton Shower and NLO-Matching uncertainties in Higgs Boson Pair Production [SJ, S.Kuttimalai] 
Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass   
[H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, G. Weiglein]

Part 3: Tools 
pySecDec: a toolbox for the numerical evaluation of multi-scale integrals  
[S. Borowka, G. Heinrich, S. Jahn, SJ, M. Kerner, J. Schlenk, T. Zirke] 
Loopedia: a Database for Loop Integrals  
[C. Bogner, S. Borowka, T. Hahn, G. Heinrich, SJ, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, V. Papara]
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Part 1: Calculations
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1) NLO QCD Vector Boson Scattering

EW production (VBS) QCD production

sensitivity to triple/quartic gauge couplings 
→ important test of EW symmetry breaking mechanism

NLO QCD 
corrections: 
significant 
reduction of 
scale 
uncertainty 
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FIG. 7: Di↵erential cross sections of the EW and QCD induced process, showing the dependence on mZ� , min(R�l),
mjj , and �yjj . For the min(R�l) distributions, we also show the NLO EW cross section without applying a cut on
mZ� . Solid bands result from scale variation by a factor of two around the central value. For the EW process, the

uncertainties associated with the PDF are shown as hatched bands.

the underlying vector boson scattering process, leading to
unitarity violation for large invariant masses. Unitarity
of the scattering amplitude can be restored by multiply-
ing the amplitude with a form factor of the form

F(s) =

✓
1 +

s

⇤2

FF

◆�2

. (14)

A di↵erent approach to unitarize the amplitude, via K-
matrix unitarization, has been explored in Ref. [35], lead-
ing to a modification of the normalized eigen-amplitudes
aIJ according to

aIJ !
aIJ

1 � iaIJ
. (15)

In the large s limit, K-matrix unitarization leads to a
behavior similar to applying a modified, complex form

factor [36],

F
c(s) =

✓
1 � i

s
2

⇤c
FF

4

◆�1

, (16)

and in the following we compare this complex form fac-
tor with the conventional form factor defined in Eq. (14).
The form factor scales ⇤FF and ⇤c

FF are set according
to the unitarity constraint, such that the helicity combi-
nation with the largest contribution to the zeroth partial
wave fulfills the unitarity condition for all vector boson
scatterings V V ! V A and WW ! V A (V 2 (Z, A)).

In Fig. 9, we show the dependence of the Z`�jj cross
section on the invariant mass mZ� of the electroweak
system for di↵erent values of fT8. It can be seen that
well below the form factor scale, the results using the
complex form factor (dashed lines) closely follows the re-
sults where no unitarization is applied. Only close to
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FIG. 6: Dependence of the total cross section on the
photon isolation parameter ✏ for di↵erent sizes of the

cone size �0.

TABLE II: Cross section of the EW and QCD
production process at di↵erent center-of-mass energies.

EW QCD

8 TeV 0.808(1)�1%

�0.9% fb 0.735(6)�14%

+15%
fb

13 TeV 2.837(1)�0.3%
�1%

fb 2.764(2)�13%

+13%
fb

14 TeV 3.359(6)�0.2%
�0.9% fb 3.31(2)�12%

+13%
fb

B. Di↵erential Distributions

In the following, we show results for di↵erential distri-
butions at

p
s = 13 TeV for the QCD and EW induced

Z`�jj processes using our default settings described in
section II. In the top panels, we show the EW LO (red)
and NLO (dark-blue) curves, including the scale uncer-
tainties. In light-blue, we show the QCD induced process
at NLO, including its scale uncertainties. In the bottom
panels, we show the corresponding EW K-factor as well
as the scale uncertainty band compared to the LO result
at the central scale. PDF uncertainties of the EW pro-
cess are shown as hatched bands. In Fig. 7, we show in
the upper row the di↵erential distribution of the invari-
ant mass of the electroweak system (left) and the min-
imum R-separation between the photon and one of the
leptons (right). In the lower row, we show jet observ-
ables for the tagging jets, the dijet invariant mass (left)
and the rapidity separation (right). Given the appropri-
ate scale choice, Qi, we observed modest K-factors, close
to one, in the whole spectrum, with larger variation in
the rapidity separation plot, ranging from 0.90-1.10, and
a drastic reduction of the scale uncertainties. In the top-
right plot, we show in addition the curve (green) without
the mZA > 120 GeV cut. As expected, the cut only re-
duces events with photons emitted close to the charged
leptons. In the bottom-left plot, one can observe clearly

the distinct behaviour of the invariant mass distribution
of the tagging jets for the EW vs QCD channels, with a
steeper fall-o↵ of the cross section for the QCD induced
process.

In Fig. 8, we show the normalized centralized rapidity
distribution of the reconstructed Z boson system (left)
and the photon (right) with respect to the tagging jests,

z
⇤(V ) =

yV �
1

2
(y1 + y2)

y1 � y2
. (9)

Whereas for the EW process, the electroweak particles
are nearly exclusively produced in the central region be-
tween the two tagging jets located at z

⇤ = ±1/2, they
are produced in a broader rapidity range for the QCD
process. Note that the distributions are not symmetric
because the jets are pT -ordered. In particular for the
QCD process, larger contributions can be found in the
vicinity of the hardest jet. The particular shape of the
QCD distributions can be explained by kinematic con-
figurations, where the hardest jet recoils against the EW
system, and a second jet, possibly stemming from gluon
radiation, is produced at large separation to fulfill the
VBF cuts.

C. Anomalous Couplings

In our implementation of the Z`�jj production cross
section, we allow for modified gauge couplings in the
framework of an e↵ective Lagrangian

LEFT = LSM +
X

d>4

X

i

fi

⇤d�4
O

(d)
i , (10)

where the operators of dimension 6 and 8 have first been
defined in Refs. [30–32]. Due to minor di↵erences in the
definition of the field strength tensors in VBFNLO, our
conventions for the dimension 8 operators di↵er from the
ones given in Ref. [32]. The exact definition, as well as the
corresponding conversion rules can be found in Ref. [7].
While all operators given in Refs. [30–32] a↵ect the Z`�jj

production cross section, the operators

OT,8 = bBµ⌫
bBµ⌫ bB↵�

bB↵� and (11)

OT,9 = bB↵µ
bBµ� bB�⌫

bB⌫↵ (12)

with

bBµ⌫ = i
g
0

2
B

a
µ⌫ (13)

are of particular interest for Z`�jj production since they
only involve neutral gauge bosons. Hence, they can first
be constrained in vector boson scattering pp ! V V jj or
triboson production pp ! V V V of neutral gauge bosons
(V 2 (Z, A)). Current experimental constraints on these
operators can be found in Refs. [33, 34].

Including anomalous gauge couplings, the amplitude
rises as M(s) / s

2 for large invariant masses s = m
2

Z� of

s = m2
Z�

effects of modified gauge couplings investigated using EFT approach

e.g. dimension-8 operator (with UY(1) gauge field,                     )
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Appendix A. While all operators given in Refs. [31–33]
a↵ect the Z`�jj production cross section, the operators

OT,8 = bBµ⌫
bBµ⌫ bB↵�

bB↵� and (11)

OT,9 = bB↵µ
bBµ� bB�⌫

bB⌫↵ (12)

with

bBµ⌫ = i
g0

2
Bµ⌫ (13)

are of particular interest for Z`�jj production since they
only involve neutral gauge bosons. Hence, they can first
be constrained in vector boson scattering pp ! V V jj or
triboson production pp ! V V V of neutral gauge bosons
(V 2 (Z, A)). Current experimental constraints on these
operators can be found in Refs. [35, 36].

Including anomalous gauge couplings, the amplitude
rises as M(s) / s2 for large invariant masses s = m2

Z� of

the underlying vector boson scattering process, leading to
unitarity violation for large invariant masses. Unitarity
of the scattering amplitude can be restored by multiply-
ing the amplitude with a form factor of the form

F(s) =

✓
1 +

s

⇤2

FF

◆�2

. (14)

A di↵erent approach to unitarize the amplitude, via K-
matrix unitarization, has been explored in Ref. [37], lead-
ing to a modification of the normalized eigen-amplitudes
aIJ according to

aIJ !
aIJ

1 � iaIJ
. (15)

In the large s limit, K-matrix unitarization leads to a
behavior similar to applying a modified, complex form

anomalous gauge couplings lead to unitarity violation for large             

Unitarity restored by:

• higher-dimensional operators in UV-complete models 
• form factors in model-independent approach

• commonly used form factor:
dipole form factor  
(dotted lines)

• new, modified form factor  
(dashed lines)

leads to smaller suppression  
without violating unitarity

no unitarization

nearly no  
suppression 
with modified FF
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2) NNLO Z-boson pair production

NNLO contributions perturbative order

0 ! qZZggq̄ tree-level

0 ! qZZQQ̄q̄ tree-level

0 ! qZZgq̄ one-loop

0 ! ggZZ one-loop

0 ! qq̄ZZ two-loop

Table 1: Perturbative order of the matrix elements for ZZ production at NNLO.

calculation of the NNLO corrections to on-shell Z-boson pairs using a di↵erent method,

based on N -jettiness subtraction [44, 45]. The e↵ect of massive quark loops has been

estimated to be at the level of a permille contribution to the total cross section in Ref. [31].

However, calculations performed in an s/m2
t expansion framework [46, 47] indicate that

the contributions may be larger, and they certainly will be important in the region of

large values of the 4-lepton invariant mass m4l, which is sensitive to the coupling of the

longitudinal Z-boson components to the top quarks loops.

2 Details of the calculation

The NNLO computation requires the evaluation of the tree-level scattering amplitudes with

two additional partons (double-real (RR) contribution), of the one-loop amplitudes with

one additional parton (real-virtual (RV) contribution) and the two-loop corrections to the

Born process (double-virtual (VV) contribution). In this way we systematically combine

all the amplitudes containing two additional powers in the strong coupling constant with

respect to the Born process such that the final result is NNLO accurate in perturbation

theory. In Table 1 we list the matrix elements for ZZ production at NNLO.

Although the sum of virtual and real corrections yields a finite result, the individual

contributions contain singularities of infrared (IR) and ultraviolet nature, such that a

direct numerical evaluation is not possible. Virtual and real corrections come from phase

space integrals of di↵erent multiplicity; therefore a framework to combine them must be

such that the divergent regions in the real-radiation contribution (corresponding to soft

and collinear emissions which map to configurations with one or two particles less, and

therefore are degenerate with the virtual contribution) can be extracted and cancelled

with the singularities of the virtual matrix elements.

In this work we employ the N -jettiness subtraction scheme [44, 45, 48, 49] to perform

the evaluation of the NNLO cross section. We begin by reviewing the definition of the

N -jettiness variable introduced in Refs. [50, 51],

⌧N =
2

Q2

X

k

min {qa · pk, qb · pk, q1 · pk, . . . , qN · pk} , (2.1)

where N denotes the number of jets desired in the final state and the sum runs over all

QCD radiated particles. In Eq. (2.1) the qa, qb and q1, . . . , qN are a fixed set of massless

reference momenta for the two beam jets and the N observed jets, the pk are the parton

– 2 –

[G. Heinrich, S. Jahn, SJ, M. Kerner, J. Pires]

Computed NNLO QCD ZZ production using the "N-Jettiness" method 
NNLO calculations consists of several separately divergent pieces

Fig: Gehrmann, von Manteuffel Tancredi 15

VBFNLO [1]

GOSAM [2]

QQVVAMP [3]
[1] Baglio et al. 11, [2] Cullen 12,14 
[3] Gehrmann, von Manteuffel Tancredi 15
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q
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q00

qj

qi

q00

Figure 1. Representative Feynman diagrams for classes A, B, C and FV relevant for the produc-
tion of two electroweak vector bosons at the two-loop level. All of these classes receive contributions
both from planar and non-planar diagrams.

In the next Section we will describe how to compute form factors A1, . . . , A10 and

therefore also form factors E1, . . . , E9 at tree-level, one-loop and two-loop order, follow-

ing a straightforward diagrammatic approach. In particular, we will discuss the di↵erent

electroweak coupling arrangements C contributing to the functions Aj and Ej ,

Aj = �i1i2

X

C
Q

�,V1V2,[C]
q q0 A

[C]
j , j = 1, . . . , 10,

Ej = �i1i2

X

C
Q

�,V1V2,[C]
q q0 E

[C]
j , j = 1, . . . , 9, (3.22)

where Q
�,V1V2,[j]
q q0 denotes a coupling factor, � is the helicity of the incoming quark, and i1,

i2 are the colours of the incoming quark and anti-quark, respectively.

We want to stress once more an important point. Reducing the 10 coe�cients Aj to

the 9 coe�cients Ej required the assumption that the external states can be treated as

4-dimensional. In order to avoid any loss of information, we will work considering the Aj

as fundamental objects (derived in d dimensions throughout) and refer to formulas (3.21)

in order to reconstruct the Ej explicitly.

4 Organisation of the calculation

The calculation of the two-loop helicity amplitudes can be set up in a way that is indepen-

dent on the nature of the vector bosons considered, by organising the Feynman diagrams

contributing to any such process into di↵erent classes. We find in particular that, as long as

we limit ourselves to QCD corrections only, at any given number of loops, seven di↵erent

types of diagrams can contribute, depending on the arrangement of the external vector

bosons.

Class A collects all those diagrams where both vector bosons are attached on the external

fermion line, such that V1 is adjacent to the quark q(p1). In the case of a left-

– 9 –

Z

Z

}

N-Jettiness:

momenta, and the dimensionful parameter Q2 is the hard interaction scale. For the specific

case of a colourless diboson system in the final state, Eq. (2.1) reduces to the 0-jettiness

or beam thrust which in the leptonic frame reads [50, 52],

T0 = Q ⌧0 =
X

k

min
�
eYZZna · pk, e

�YZZnb · pk
 
, (2.2)

where na = (1, 0, 0, 1) and nb = (1, 0, 0,�1) define the beam axis and the pk are defined in

the hadronic centre-of-mass frame. In the context of N -jettiness subtractions taking into

account the boost with rapidity YZZ of the Born system is essential to ensure that the

power corrections are independent of YZZ [52].

Looking at the definition of 0-jettiness in Eq. (2.2) we can observe that T0 ! 0 in the

limit where the QCD emission pk is soft or collinear to the initial state. For this reason

values of T0 close to zero indicate a final state containing the ZZ final state and only IR

(soft and collinear) emissions. In this way the N -jettiness variable can be used as a slicing

parameter in any real-radiation phase space integral to separate infrared singular regions

from hard and resolved configurations. In that sense the approach extends the slicing

methods developed in the early 90’s to compute higher-order corrections at NLO [53] to

NNLO.

To proceed we employ a T
cut
0

in the real-radiation NNLO phase space and split the

cross section into regions above and below T
cut
0

[44, 45, 49],

�NNLO =

Z
d�N |MV V |

2 +

Z
d�N+1 |MRV |

2 ✓<
0

+

Z
d�N+2 |MRR|

2 ✓<
0
+

Z
d�N+1 |MRV |

2 ✓>
0

+

Z
d�N+2 |MRR|

2 ✓>
0

⌘ �NNLO(T0 < T
cut
0 ) + �NNLO(T0 > T

cut
0 ) .

(2.3)

In Eq. (2.3) we have abbreviated ✓<
0
= ✓(T cut

0
� T0) and ✓>N = ✓(T0 � T

cut
0

), and have sup-

pressed for simplicity the allowed introduction of any infrared-safe measurement function

under the phase space integral. The first three terms in this expression all have T0 < T
cut
0

,

and have been collectively denoted as �NNLO(T0 < T
cut
0

). The remaining two terms have

T0 > T
cut
0

, and have been collectively denoted as �NNLO(T0 > T
cut
0

). Contributions with

Born-level kinematics necessarily have T0 = 0.1 As explained in the previous paragraph

contributions with T0 > T
cut
0

necessarily contain one or more well separated hadronic

energy depositions and thus reproduce the ZZ+jet cross section at NLO, while the con-

tributions with T0 < T
cut
0

correspond to the limit of the ZZ+jet NLO cross section where

the jet is unresolved (soft and/or collinear). The key advantage that allows the computa-

tion of the cross section at NNLO below T
cut
0

is the fact that in the limit where all QCD

emission is soft or collinear, the cross section can be approximately computed using the

1
Prior to its application for fixed-order perturbative QCD calculations a similar partitioning of the phase

space was introduced by the Geneva collaboration [54, 55] in the context of merging fixed-order calculations

with parton showers.
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with parton showers.

– 3 –

Slice phase space into regions based 
based on     , for small     soft/collinear 
emissions can be approximated using 
SCET. Limit                 gives full result.

T0 T0

T cut
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Figure 2: T
cut
0 dependence of the NNLO coe�cient for ZZ production with the T0 independent

gg ! ZZ contribution subtracted. The black dashed line shows the fit of the T
cut
0 dependence of

the NNLO coe�cient (black data points) to the analytic form in equation (3.1). The T cut
0 ! 0 limit

is shown as a solid black line with a grey band showing the uncertainty on the fitted parameter. The
red line represents the NNLO coe�cient reconstructed from the NNLO result obtained in Ref. [31].

�LO [pb] �NLO [pb] �NNLO [pb]

Our Result 9.890+4.9%
�6.1% 14.508+3.0%

�2.4% 16.92+3.2%
�2.6%

ATLAS [7] 17.3± 0.6(stat.)± 0.5(syst.)± 0.6(lumi.)

CMS [8] 17.2± 0.5(stat.)± 0.7(syst.)± 0.4(theo.)± 0.4(lumi.)

Table 2: Inclusive cross section for ZZ production at the LHC run II
p
s =13 TeV at LO, NLO

and NNLO with µR = µF = mZ , together with the measurements from ATLAS [7] and CMS [8].
Uncertainties in the theory calculation at each order are obtained by varying the renormalisation
and factorisation scales in the range 0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF /µR <
2. Uncertainties in the experimental measurements denote absolute statistical, systematic and
luminosity uncertainties.

The resulting theoretical predictions can be compared with the ATLAS and CMS

measurements at
p
s = 13 TeV [7, 8], also shown in the Table 2. We observe a significant

improvement in the agreement with the data after the inclusion of the NNLO corrections.

In order to study in more detail the scale uncertainty of the cross section we present in

Fig. 3 the renormalisation and factorisation scale dependence of the ZZ cross section at LO,

NLO and NNLO. The figure shows largely non-overlapping scale uncertainty bands which

demonstrate that for this process, the scale variations are insu�cient to estimate missing

higher order terms in the perturbative expansion. This however is not unexpected since

ZZ production at the LHC is an electroweak process which exhibits no renormalisation

scale dependence at LO. For this reason we obtain large NLO QCD corrections to the cross

– 9 –

NNLO corrections move theory 
prediction towards ATLAS/CMS 
measurements

Large part of the NNLO result 
comes from the opening up of the 
gluon channel

Z/m
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F

µ
=1.0Z/m

F
µ

=2.0Z/m
F

µ

Figure 3: Renormalisation and factorisation scale dependence of the ZZ cross section at LO,
NLO and NNLO for the central scale choice µR = µF = mZ . We also show the NNLO result
without the gluon fusion contributions. The thickness of the bands shows the variation in the cross
section due to factorisation scale while the slope shows the renormalisation scale dependence. The
scale uncertainty was obtained by varying the renormalisation and factorisation scales in the range
0.5mZ < µR, µF < 2mZ with the constraint 0.5 < µF /µR < 2.

section which are outside the LO scale band. Moreover, when going from NLO to NNLO,

the loop-induced gluon fusion channel gg ! ZZ opens up, and due to the large gluon flux

it represents a numerically significant contribution. Since this new channel contributes for

the first time at NNLO its contribution cannot be captured by the scale variation of the

NLO cross section. Therefore, when increasing the perturbative order, we can observe a

systematic reduction of the factorisation scale dependence of the cross section (indicated

by the thickness of the scale uncertainty band), while there is no significant reduction of

the renormalisation scale dependence. To show that this e↵ect can be attributed to the

gluon fusion channel opening up at NNLO, we also show the NNLO result excluding this

channel, leading to an improved convergence of the perturbative expansion.

The appearance of new channels that open up at NNLO and their importance in

the various kinematic regions can be studied by considering di↵erential results. Due to

the observed mild power corrections in this process we chose to fix the value of the 0-

jettiness slicing parameter to T
cut
0

= 10�2 GeV for all our histograms. In Fig. 4 we present

the invariant mass of the ZZ system and the average transverse momentum distribution

hpT,Zi of any Z-boson, defined as hpT,Zi = (|pZ1
T |+ |pZ2

T |)/2. We also present results for the

loop-induced gg ! ZZ channel.

In Fig. 4a we show our results for the ZZ invariant mass. In the first and second

sub-panels we show the e↵ect of the NLO and NNLO corrections, respectively. We observe

in the first sub-panel large NLO QCD corrections which vary between 40% at low mZZ

– 10 –
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Part 2: Precision studies



11

•  Compare different theory descriptions of top quark pair production

•  Assess impact on top quark mass determinations

[G. Heinrich, A. Maier, R. Nisius, J. Schlenk, M. Schulze, L. Scyboz, J. Winter]

pp ! W+W�bb̄ ! (e+⌫e) (µ�⌫̄µ) bb̄ at NLONLOfull :

NLO
LOdec

NWA
:

NLO
NLOdec

NWA
:

NLOPS :

contains e.g.

non-resonant
non-factorising

tt̄NLO production ⌦ LO decay

tt̄NLO production ⌦ NLO decay

tt̄NLO production ⌦ decay via parton showering

narrow width  
approximation

o

1) Top quark mass determinations
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Generate pseudo-data according to NLOfull

Use theory descriptions to calibrate template fit functions 

Determine off-set in top mass determination 

0.83± 0.07GeVOffset 
based on  NLO

NLOdec

NWA

with templates

NLO corrections to decay more important than  
non-factorising/non-resonant contributions

Offset �1.52± 0.07GeV

based on LO 
with templates

W+W�bb̄
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2) NLO Higgs boson pair production + PS

L � �V (�), V (�) =
1

2
µ2�2 +

1

4
��4

SM Lagrangian:

EW sym. breaking

m
2
H

2
H

2 +
m

2
H

2v
H

3 +
m

2
H

8v2
H

4

Higgs pair production probes 
triple-Higgs coupling

Particle mass [GeV]
1−10 1 10 210

vV
m V

κ
 o

r 
vF

m F
κ

4−10

3−10

2−10

1−10

1
W

t
Z

b

µ

τ

ATLAS+CMS
SM Higgs boson

] fitε[M, 
68% CL
95% CL

Run 1 LHC
CMS and ATLAS

Figure 19: Best fit values as a function of particle mass for the combination of ATLAS and CMS data in the case of
the parameterisation described in the text, with parameters defined as F · mF/v for the fermions, and as

p
V · mV/v

for the weak vector bosons, where v = 246 GeV is the vacuum expectation value of the Higgs field. The dashed
(blue) line indicates the predicted dependence on the particle mass in the case of the SM Higgs boson. The solid
(red) line indicates the best fit result to the [M, ✏] phenomenological model of Ref. [129] with the corresponding
68% and 95% CL bands.

6.3.2. Probing the lepton and quark symmetry

The parameterisation for this test is very similar to that of Section 6.3.1, which probes the up- and down-
type fermion symmetry. In this case, the free parameters are �lq = l/q, �Vq = V/q, and qq = q ·q/H ,
where the latter term is positive definite, like uu. The quark couplings are mainly probed by the ggF
process, the H ! �� and H ! bb decays, and to a lesser extent by the ttH process. The lepton couplings
are probed by the H ! ⌧⌧ decays. The results are expected, however, to be insensitive to the relative
sign of the couplings, because there is no sizeable lepton–quark interference in any of the relevant Higgs
boson production processes and decay modes. Only the absolute value of the �lq parameter is therefore
considered in the fit.

The results of the fit are reported in Table 19 and Fig. 22. The p-value of the compatibility between
the data and the SM predictions is 79%. The likelihood scan for the �lq parameter is shown in Fig. 23
for the combination of ATLAS and CMS. Negative values for the parameter �Vq are excluded by more
than 4�.

45

So far, measured Higgs couplings 
agree with the Standard Model 

But: Higgs self coupling not yet well 
constrained
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Computed NLO QCD (2-loop) corrections to HH production (2016)
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Interfaced to 2 public Monte-Carlo codes (POWHEG, MG5_aMC@NLO) 

• assess impact of NLO matching schemes/parton shower 

• full result made available for use by LHC experiments

POWHEG MG5_aMC@NLO

[ S. Borowka, N. Greiner, G. Heinrich, SJ, M. Kerner, J. Schlenk, U. Schubert, T. Zirke ]

[ G. Heinrich, SJ, M. Kerner, G. Luisoni, E. Vryonidou ]

Large for phhT
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3) NLO matching uncertainties in HH production

[ SJ, S. Kuttimalai ]
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Figure 5: Parton shower NLO matching e↵ects on the p
HH

? spectrum in a full SM calculation.
The left panel shows results obtained with the CS shower, while the results on the right
were generated with the Dire shower. The uncertainty band around the fixed-order
result is obtained through variations of µF and µR. Uncertainties on the MC@NLO
predictions are obtained by varying µPS.

Figure 6: Parton shower e↵ects on the p
HH

? spectrum in a modified MC@NLO simulation where
we replaced the S-event di↵erential seed cross section B̄ by B. The uncertainty band
around the fixed-order result is obtained through variations of µF and µR. Uncertain-
ties on the MC@NLO predictions are obtained by varying µPS.

9

Interfaced NLO HH to a further Monte-Carlo code (SHERPA) 

Studied in more detail the matching uncertainties for       :

Cancellation spoiled if: 

• Large NLO corrections (           ) 

• Splitting kernels (   ) numerically large 
compared to real radiation 

• Phase space accessible to the PS 

All features present for HH production

The first line of (9) corresponds to events that have Born kinematics at the level of the fixed-order
seed event with weight B̄ (S-events). They either don’t undergo any emission above the infrared
parton shower cuto↵ scale t0 (first term in the square bracket) or they undergo their hardest
emission at some scale t between µ

2
PS and t0 (second term in the square bracket). The second

line of (9) corresponds to events with real-emission kinematics at the level of the fixed-order seed
event and weight H (H-events). All events are treated further by the parton shower precisely as
in the leading order case, apart from the S-events that haven’t undergone any emission, which
are kept as they are.

Since the square bracket in (9) integrates to 1, the total cross section and any observable
that is insensitive to QCD radiation is unaltered in MC@NLO compared to the fixed-order NLO
result. In fact, it can be shown that a MC@NLO event sample will reproduce the fixed-order
NLO result event to order ↵S relative to the Born for any infrared safe observable [16]. The
parametric NLO accuracy is therefore not spoiled by the parton shower matching.

1.4 Parton Shower Matching Uncertainties

As stated in the previous section, NLO parton shower matching according to the MC@NLO
method preserves the parametric accuracy of the fixed-order NLO calculation. Deviations from
fixed-order results can numerically be nonetheless significant [31]. Such di↵erences reflect genuine
parton shower matching uncertainties, they can be particularly prominent for observables that
are sensitive to real emission configurations and thereby to the interplay between parton shower
emissions and fixed-order real emission configurations. We will therefore focus on the p

HH

?
distribution in the following section, comparing MC@NLO matched parton shower simulations
to fixed-order results with both the Dire and the CS shower.

In order to formally compare the MC@NLO result to a fixed-order prediction for this spectrum,
we first consider a generic observable O that is insensitive to kinematic Born configurations. For
such an observable we need to take into account H-events and parton shower emissions o↵ S-
events. At order ↵S relative to the Born we have

hOi =

Z
B̄(�B)�(t, µ2

PS)
D(�B ,�1)

B(�B)
⇥(µ2

PS � t)O(�R) d�B d�1

+

Z
H(�R)O(�R) d�R, (12)

where the first integral corresponds to S-events in which the parton shower has generated a non-
vanishing value of O and the second integral corresponds to H-events, where a non-vanishing
value of O is implied by the real-emission kinematics of the fixed-order seed event. In the tail of
the distribution where we can neglect the Sudakov suppression and set � = 1, we obtain after
plugging in the definition of H:

hOi =

Z ⇥
B̄(�B) � B(�B)

⇤ D(�B ,�1)

B(�B)
⇥(µ2

PS � t)O(�R) d�B d�1

+

Z
R(�R)O(�R) d�R. (13)

To order ↵s we have B̄ = B and the first integral cancels as required by the matching conditions,
thus restoring the fixed-order result. This explicitly demonstrates how variations in the parton
shower contributions induced by S-events are subtracted by the MC@NLO subtraction terms D
in the definition of H. Numerically, however, this cancellation can be severely spoiled, poten-
tially leading to sizeable deviations from the fixed order result. For this to occur, the following
conditions have to be met:

1) The NLO corrections, and therefore the term B̄ � B, must be numerically large. With an
NLO K-factor of about 1.6, this is certainly true for Higgs boson pair production.

2) The numerical value of the parton shower splitting kernels must be comparable to the
fixed-order real emission matrix elements. In combination with item 1) this leads to a
large relative impact of the first line in equation (13)

5

phhT

B̄ �B

D



16

Precise prediction of MSSM Higgs boson mass

[H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, G. Weiglein]

I for low scales, fixed-order calculation precise
I for high scales, EFT calculation precise

∆ combine both for precise prediction for all scales (FeynHiggs)

but for high scale discrepanies with pure EFT calculation observed

Two main origins found:
I Naive scheme conversion

not adequate
I Terms induced by pole

determination
improved in FeynHiggs 2.14.0
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4) Precise prediction of MSSM Higgs Boson Mass

[ H. Bahl, T. Hahn, S. Heinemeyer, W. Hollik, G. Weiglein ]
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Part 3: Tools
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(a)

(b)

Figure 1: Typical Feynman diagrams in the two loop contributions to gg → H with (a) a heavy fermion in the

loop, (b) a heavy scalar in the loop .

where p12 = p1 + p2, mt is the mass of the particle running in the loops and k and l are the loop momenta.

The reduction to master integrals is done using integration by part identities [30, 31] combined with

the Laporta algorithm [5] in [15, 16]. We found 17 master integrals, which are shown in Figure 3. It is

possible to choose a different basis of master integrals; the basis we choose is particularly convenient for

the method of differential equations.

The master integrals in the first two lines of Figure 3 are products of known one-loop integrals [17,19].

The master integrals in the third, fourth and fifth line in Figure 3 are non-factorizable. Integrals in the

third and fourth line were calculated already in [18]1 and [19, 21, 22]. respectively. The double triangle,

last diagram in the third line was calculated in [21–23]. Also the six propagators triangle - third diagram

in the last line of Figure 3 - has been calculated in [20].

3. Master integrals

We computed all master integrals using the differential equation method [11,32–36]. The natural variable

to express the results is

x =

√
1 − τ − 1

√
1 − τ + 1

+ iε where τ =
4mt

2

s
, (3.1)

1Our results fully agree with the results quoted in this reference taken from the electronic file in

http://pheno.physik.uni-freiburg.de/bonciani/. The printed version contains several typographical mistakes.

– 3 –

p2
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k + p1
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k2
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⇠
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d4k

(2⇡)4
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D1D2D3D4

D1 = k2 �m2
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Computing multi-loop integrals can be hard (often case-by-case)

# Loops ≡ # Unconstrained Momenta ↔ # of Integrations

A short aside on loop integrals...



pyS��D��: A Toolbox to Evaluate multi-scale Integrals

Sector Decomposition
or: Resolution of Overlapping Singularities
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1) pySecDec

A toolbox for the numerical evaluation of multi-scale integrals (e.g. 
loop integrals), successor of SecDec 3

[S. Borowka, G. Heinrich, S. Jahn, SJ, M. Kerner, J. Schlenk, T. Zirke]

Download pySecDec: https://github.com/mppmu/secdec 
Read the docs: https://secdec.readthedocs.io

Written in python & c++ using only open source software 
Many new features and improvements: 
• Arbitrary number of regulators (not just   ) 
• Improvements to handling of integrals without Euclidean region 
• Generates c++ Library (can be linked to your own program)

✏

https://github.com/mppmu/secdec
https://secdec.readthedocs.io
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INT[“A3diminc2”, 7, 758, 10, 0, {0, 2, 2, 0, 2, 1, 1, 1, 0, 1, 0, 0}] =

(6−2ϵ)

INT[“B3”, 7, 1722, 7, 0, {0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0}] =

(4−2ϵ)

INT[“C3diminc4”, 8, 2959, 16, 0, {2, 2, 3, 1, 0, 0, 0, 2, 1, 2, 0, 3}] =

(8−2ϵ)

INT[“B3”, 8, 2750, 8, 0, {0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1}] =

(4−2ϵ)

INT[“B3diminc2”, 8, 1662, 10, 0, {0, 1, 1, 2, 1, 1, 1, 0, 0, 2, 1, 0}] =

(6−2ϵ)

INT[“A3diminc2”, 9, 1790, 10, 0, {0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0}] =

(6−2ϵ)

INT[“B3diminc2”, 9, 1790, 10, 0, {0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0}] =

(6−2ϵ)

INT[“C3diminc2”, 9, 1015, 10, 0, {1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 0}] =

(6−2ϵ)

3

3

1

2

4

5

p1

p2

p3 = p1 + p2

Example: Computing a loop integral with pySecDec

from pySecDec.loop_integral import loop_package
import pySecDec as psd
li = psd.loop_integral.LoopIntegralFromGraph(

internal_lines = [ [0,[1,2]], [0,[1,4]], [0,[1,5]], [0,[2,4]],
[0,[2,5]], [0,[3,4]], [0,[3,5]] ],

external_lines = [['p1',1],['p2',2],['p3',3]],

replacement_rules = [ ('p1*p1',0), ('p2*p2',0), ('p3*p3','-1'),
('p1*p2','-1/2'), ('p2*p3','1/2'),
('p1*p3','1/2')

]
)
loop_package(

name = 'triangle3L',
loop_integral = li,
real_parameters = [],
additional_prefactor = '(-eps*gamma(-eps))**3',
requested_order = 4,
contour_deformation = False

)

Adjacency list

Mass of edge

Kinematics

$ python generate_triangle3L.py
$ make -C triangle3L
$ time python integrate_triangle3L.py
eps^0: -34.1014388606677699 +/- ( 0.0290999044466536197 )
eps^1: -295.960848811477547 +/- ( 0.265576787789600199 )
eps^2: -2053.19955045435336 +/- ( 1.65760760623154724 )
<skipped output>

real 0m1.895s Numerical result
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2) Loopedia

Loopedia is a new database for loop integrals at www.loopedia.org:

• indexed by graph-theoretical 
properties 

• can hold bibliographic but 
also other information, (e.g. 
results in some machine-
readable format) 

• slim CGI design, Unix 
filesystem doubles as 
database

[C. Bogner, S. Borowka, T. Hahn, G. Heinrich, SJ, M. Kerner,  
A. von Manteuffel, M. Michel, E. Panzer, V. Papara]

http://www.loopedia.org
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Graph Browser:
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Record Viewer:
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Conclusion

Currently at MPI: 
• Studying SM and BSM processes 
• Producing cutting edge calculations (e.g. HH, ZZ, NNLO Jet) 
• Performing precision studies with direct relevance to current and 

future colliders 
• Collaborating with experimentalists (e.g. top quark mass 

measurements) 
• Developing tools for the HEP community 

Future:  
• NLO HH EFT study 
• NLO QCD Higgs + Jet (including top quark mass) 
• Moving towards multi-loop automation (GoSam XLoop) 
• ...

Thank you for listening!
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Backup
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full NLO corrections introduce  
significant shape changes and  
asymmetric scale uncertainties

NLOPS NLO
NLOdec

NWA
and

similar in the              fit rangeNLOPS

mlb lepton - b-jet invariant mass

NLOPS

NLO
NLOdec

NWA
closer to NLOfull

than  



27

Loopedia New Record Form:


