Precision Phenomenology: Exploring the Higgs Sector and Beyond

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Stephen Jones

for the MPP Phenomenology Group

Group Goals

What we do:

- Take or develop well motivated mathematical models (Standard Model, SUSY Theories, Effective Field Theories,...)
- Produce precise, concrete predictions for high energy colliders (LHC, ILC, FCC, ...)

How we do it:

- Establish a mathematical understanding of the theory
- Develop and use state of the art computational tools and techniques

Why we do it:

- With our experimental colleagues, we want to test and refine our understanding of the fundamental forces
- E.g: Probing the nature of Electro-weak symmetry breaking, constraining the solution space for new fundamental particles and interactions

MPP Phenomenology Group

Director:

Wolfgang Hollik

Staff Members:

Thomas Hahn, Gudrun Heinrich

Postdoctoral Researchers:

Stephen Jones, Matthias Kerner, Gionata Luisoni (short-term) **Finishing this year:** Joao Pires (Technical Institute of the University of Lisbon) **Welcome:** Long Chen

PhD Students:

Henning Bahl, Stephan Hessenberger, Stephan Jahn, Viktor Papara, Cyril Pietsch, Ludovic Scyboz (partial member) **Welcome:** Matteo Capozi

Project Highlights

Part 1: Calculations

Triple Higgs coupling effect on $h^0 \rightarrow b\overline{b}$ and $h^0 \rightarrow \tau^+ \tau^-$ in the 2HDM

[A. Arhrib, R. Benbrik, J. El Falaki, <u>W. Hollik</u>]

ZA production in vector-boson scattering at NLO QCD [F. Campanario, M. Kerner, D. Zeppenfeld]

NNLO predictions for Z-boson pair production at the LHC [G. Heinrich, S. Jahn, SJ, M. Kerner, J. Pires]

NNLO QCD predictions for single jet inclusive production at the LHC [J. Currie, E.W.N. Glover, <u>J. Pires</u>]

Part 2: Precision studies

NLO and off-shell effects in top quark mass determinations

[G.Heinrich, A.Maier, R.Nisius, J.Schlenk, M.Schulze, L.Scyboz, J.Winter]

NLO predictions for Higgs boson pair production matched to parton showers

[G. Heinrich, SJ, M. Kerner, G. Luisoni, E. Vryonidou]

Parton Shower and NLO-Matching uncertainties in Higgs Boson Pair Production [SJ, S.Kuttimalai] Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass

[<u>H. Bahl, T. Hahn</u>, S. Heinemeyer, <u>W. Hollik</u>, G. Weiglein]

Part 3: Tools

pySecDec: a toolbox for the numerical evaluation of multi-scale integrals

[S. Borowka, <u>G. Heinrich</u>, <u>S. Jahn</u>, <u>SJ</u>, <u>M. Kerner</u>, J. Schlenk, T. Zirke]

Loopedia: a Database for Loop Integrals

[C. Bogner, S. Borowka, <u>T. Hahn, G. Heinrich, SJ, M. Kerner</u>, A. von Manteuffel, M. Michel, E. Panzer, <u>V. Papara</u>]

Part 1: Calculations

1) NLO QCD Vector Boson Scattering

sensitivity to triple/quartic gauge couplings

→ important test of EW symmetry breaking mechanism

NLO QCD corrections: significant reduction of scale uncertainty effects of modified gauge couplings investigated using EFT approach e.g. dimension-8 operator $\mathcal{O}_{T,8} = \hat{B}_{\mu\nu}\hat{B}^{\mu\nu}\hat{B}_{\alpha\beta}\hat{B}^{\alpha\beta}$ (with U_Y(1) gauge field, $\hat{B}_{\mu\nu} = i\frac{g'}{2}B_{\mu\nu}$) anomalous gauge couplings lead to unitarity violation for large $s = m_{Z\gamma}^2$ Unitarity restored by:

- higher-dimensional operators in UV-complete models
- form factors in model-independent approach
- commonly used form factor: $f_{T8} = 1200 \,\mathrm{TeV}^{-4}$ $f_{T8} = 600 \,\mathrm{TeV}^{-4}$ SM EW 10^{-2} dipole form factor no unitarization (dotted lines) $\mathrm{d}\sigma/\mathrm{d}m_{Z\gamma}$ [fb/GeV] $^{10_{-4}}$ $\mathcal{F}(s) = \left(1 + \frac{s}{\Lambda_{EE}^2}\right)^{-2}$ new, modified form factor (dashed lines) nearly no $\mathcal{F}^c(s) = \left(1 - i\frac{s^2}{\Lambda_{EE}^c}\right)^{-1}$ 10^{-5} suppression with modified FF leads to smaller suppression 10^{-6} 500 1000 1500 2000 without violating unitarity 25003000 3500 4000 $m_{Z\gamma}$ [GeV]

7

2) NNLO Z-boson pair production

[G. Heinrich, S. Jahn, SJ, M. Kerner, J. Pires]

Computed NNLO QCD ZZ production using the "N-Jettiness" method NNLO calculations consists of several separately divergent pieces

NNLO contributionsperturbative order $0 \rightarrow qZZgg\bar{q}$ tree-levelVBFNLO [1] $0 \rightarrow qZZQ\bar{Q}\bar{q}$ tree-levelVBFNLO [1] $0 \rightarrow qZZg\bar{q}$ one-loopGOSAM [2] $0 \rightarrow q\bar{q}ZZ$ one-loopQQVVAMP [3]

Fig: Gehrmann, von Manteuffel Tancredi 15

[1] Baglio et al. 11, [2] Cullen 12,14[3] Gehrmann, von Manteuffel Tancredi 15

N-Jettiness:

$$\begin{split} \mathcal{T}_{0} &= Q \,\tau_{0} = \sum_{k} \min \left\{ e^{Y_{ZZ}} n_{a} \cdot p_{k}, e^{-Y_{ZZ}} n_{b} \cdot p_{k} \right\} \quad \sigma_{NNLO} = \int \mathrm{d}\Phi_{N} \, |\mathcal{M}_{VV}|^{2} + \int \mathrm{d}\Phi_{N+1} \, |\mathcal{M}_{RV}|^{2} \, \theta_{0}^{<} \\ \text{Slice phase space into regions based} \quad &+ \int \mathrm{d}\Phi_{N+2} \, |\mathcal{M}_{RR}|^{2} \, \theta_{0}^{<} + \int \mathrm{d}\Phi_{N+1} \, |\mathcal{M}_{RV}|^{2} \, \theta_{0}^{>} \\ \text{based on } \mathcal{T}_{0} \text{, for small } \mathcal{T}_{0} \text{ soft/collinear} \quad &+ \int \mathrm{d}\Phi_{N+2} \, |\mathcal{M}_{RR}|^{2} \, \theta_{0}^{>} \\ &+ \int \mathrm{d}\Phi_{N+2} \, |\mathcal{M}_{RR}|^{2} \, \theta_{0}^{>} \\ \text{emissions can be approximated using} \quad &= \sigma_{NNLO}(\mathcal{T}_{0} < \mathcal{T}_{0}^{cut}) + \sigma_{NNLO}(\mathcal{T}_{0} > \mathcal{T}_{0}^{cut}) \, . \end{split}$$

	$\sigma_{LO} \ [pb]$	$\sigma_{NLO} \; [\text{pb}]$	σ_{NNLO} [pb]		
Our Result	$9.890^{+4.9\%}_{-6.1\%}$	$14.508^{+3.0\%}_{-2.4\%}$	$16.92^{+3.2\%}_{-2.6\%}$		
ATLAS	$17.3 \pm 0.6 (\text{stat.}) \pm 0.5 (\text{syst.}) \pm 0.6 (\text{lumi.})$				
CMS	$17.2 \pm 0.5 (s$	tat.) ± 0.7 (syst	t.) ± 0.4 (theo.) ± 0.4 (lumi.)		

NNLO corrections move theory prediction towards ATLAS/CMS measurements

Large part of the NNLO result comes from the opening up of the gluon channel

Part 2: Precision studies

1) Top quark mass determinations

[G. Heinrich, A. Maier, <u>R. Nisius</u>, J. Schlenk, M. Schulze, <u>L. Scyboz</u>, J. Winter]

• Compare different theory descriptions of top quark pair production

NLO

• Assess impact on top quark mass determinations

Generate pseudo-data according to $\mathbf{NLO}_{\mathbf{full}}$ Use theory descriptions to calibrate template fit functions Determine off-set in top mass determination

NLO corrections to decay more important than non-factorising/non-resonant contributions

2) NLO Higgs boson pair production + PS

Higgs pair production probes triple-Higgs coupling

So far, measured Higgs couplings agree with the Standard Model **But:** Higgs self coupling not yet well constrained

SM Lagrangian:

$$\mathcal{L} \supset -V(\Phi), \quad V(\Phi) = \frac{1}{2}\mu^2 \Phi^2 + \frac{1}{4}\lambda \Phi^4$$

EW sym. breaking

$$\frac{m_H^2}{2}H^2 + \frac{m_H^2}{2v}H^3 + \frac{m_H^2}{8v^2}H^4$$

Computed NLO QCD (2-loop) corrections to HH production (2016) [S. Borowka, N. Greiner, <u>G. Heinrich</u>, <u>SJ</u>, <u>M. Kerner</u>, J. Schlenk, U. Schubert, T. Zirke]

Interfaced to 2 public Monte-Carlo codes (POWHEG, MG5_aMC@NLO)

- assess impact of NLO matching schemes/parton shower
- full result made available for use by LHC experiments Large for p_T^{hh}

[<u>G. Heinrich, SJ, M. Kerner, G. Luisoni</u>, E. Vryonidou]

3) NLO matching uncertainties in HH production

[<u>SJ</u>, S. Kuttimalai]

Interfaced NLO HH to a further Monte-Carlo code (SHERPA) Studied in more detail the matching uncertainties for p_T^{hh} :

$$\begin{aligned} \langle \mathcal{O} \rangle &= \int \left[\bar{B}(\phi_B) - B(\phi_B) \right] \frac{D(\phi_B, \phi_1)}{B(\phi_B)} \Theta(\mu_{\mathrm{PS}}^2 - t) \mathcal{O}(\phi_R) \, \mathrm{d}\phi_B \, \mathrm{d}\phi_1 \\ &+ \int R(\phi_R) \mathcal{O}(\phi_R) \, \mathrm{d}\phi_R. \end{aligned}$$

Cancellation spoiled if:

- Large NLO corrections ($\overline{B} B$)
- Splitting kernels (*D*) numerically large compared to real radiation
- Phase space accessible to the PS

All features present for HH production

4) Precise prediction of MSSM Higgs Boson Mass

[<u>H. Bahl</u>, <u>T. Hahn</u>, S. Heinemeyer, <u>W. Hollik</u>, G. Weiglein]

- ▶ for low scales, fixed-order calculation precise
- ▶ for high scales, EFT calculation precise
- \Rightarrow combine both for precise prediction for all scales (FeynHiggs)

but for high scale discrepanies with pure EFT calculation observed

Two main origins found:

- Naive scheme conversion not adequate
- Terms induced by pole determination

improved in FeynHiggs 2.14.0

A short aside on loop integrals...

Loops = # Unconstrained Momenta ↔ # of Integrations

Computing multi-loop integrals can be hard (often case-by-case)

1) pySecDec

[S. Borowka, <u>G. Heinrich</u>, <u>S. Jahn</u>, <u>SJ</u>, <u>M. Kerner</u>, J. Schlenk, T. Zirke] A toolbox for the numerical evaluation of multi-scale integrals (e.g. loop integrals), successor of SecDec 3

Written in python & c++ using only open source software Many new features and improvements:

- Arbitrary number of regulators (not just ϵ)
- Improvements to handling of integrals without Euclidean region
- Generates c++ Library (can be linked to your own program)

Download pySecDec: <u>https://github.com/mppmu/secdec</u> Read the docs: <u>https://secdec.readthedocs.io</u>

Example: Computing a loop integral with pySecDec

2) Loopedia

[C. Bogner, S. Borowka, <u>T. Hahn</u>, <u>G. Heinrich</u>, <u>SJ</u>, <u>M. Kerner</u>, A. von Manteuffel, M. Michel, E. Panzer, <u>V. Papara</u>]

Loopedia is a new database for loop integrals at <u>www.loopedia.org</u>:

	☐ loopedia.mpp.mpg.de	Ċ	ð +			
		Multiple Upload (expert)			
	looned					
	LOOPEU					
Fx · Edge list [(1 2) (2 3) (2 3) (3 4)] o	r 12232334 — Nickel index e11 e					
	Ex.: Edge list [[1,2],(2,5),(2,5),(3,4)] or 12232334 — Mickel index e11[e] Enter your graph by its edge list (adjacency list) or Nickel index					
	or browse:					
Loops	= ᅌ any ᅌ Legs = ᅌ any ᅌ Scales	s = ᅌ any ᅌ				
Fulltext must contain:	must not contain:					
	Search Reset					
If you wish to add a new integral to the database, start by searching for its graph first.						
The Loopedia Team is C. Bogner, S. Borowka, T. Hahn, G. Heinrich, S. Jones, M. Kerner, A. von Manteuffel, M. Michel, E. Panzer, V. Papara. Software version of 06 Nov 2017 16:01 UTC. In case of technical difficulties with this site please contact Thomas Hahn or Viktor Papara.						
This Web site u	ses the <u>GraphState library</u> [arXiv:1409.8227] for all g	raph-theoretical operations				
	and the heato component or Graphylz for drawing	, Brahus.				

Loopedia is free and open to everyone. To acknowledge and support the work put into keeping Loopedia up to date, please cite arXiv:1709.01266

- indexed by graph-theoretical properties
 - can hold bibliographic but also other information, (e.g. results in some machinereadable format)
 - slim CGI design, Unix filesystem doubles as database

Graph Browser:

Record Viewer:

	☐ loopedia.mpp.mpg.de	1 0 +				
Graph e12 e3 34 5 e5 e — Masses 110 10 00 0 11 1 Edit •:• Edit • Browse •:* Home						
Edge list: (e,0 1) (0,1 1) (0,2 0) Nickel index: e12 e3 34 5 e5 e :110 1 Database path: 2/4/7/e12 e3 34 5 e5 e	(e,1 1) (1,3 0) (2,3 0) (2,4 0) (3,5 0) (e,4 1) 0 00 0 11 1 /3/ <mark>110 10 00 0 11 1 </mark>	(4,5 1) (e,5 1)				
View public records for this configura	Propagator P1 $m = m1$ Propagator P2 $m = 0$ Propagator P3 $m = 0$ Propagator P3 $m = 0$ Propagator P4 $m = 0$ Propagator P5 $m = 0$ Propagator P5 $m = 0$ Propagator P6 $m = 0$ Propagator P7 $m = m1$ External Leg E1 $q^2 = m1^2$ External Leg E2 $q^2 = m1^2$ External Leg E3 $q^2 = m1^2$ External Leg E4 $q^2 = m1^2$	† ABOVE †				
Reference: arXiv:1612.05609 Description: The authors compute the plan where QQ are massive external quarks u Submitter: sophia.borowka@cern.ch	ar 2-loop box master integrals involved in $QQ \rightarrow QQ$, using the method of differential equations.	Record 1482239373.Z1Fv added 20 Dec 2016 13:09 UTC last modified 23 May 2017 14:07 UTC				

Conclusion

Currently at MPI:

- Studying SM and BSM processes
- Producing cutting edge calculations (e.g. HH, ZZ, NNLO Jet)
- Performing precision studies with direct relevance to current and future colliders
- Collaborating with experimentalists (e.g. top quark mass measurements)
- Developing tools for the HEP community

Future:

- NLO HH EFT study
- NLO QCD Higgs + Jet (including top quark mass)
- Moving towards multi-loop automation (GoSam XLoop)

Thank you for listening!

Backup

 $\mathbf{NLO_{PS}}$ and $\mathbf{NLO_{NWA}^{NLOdec}}$ similar in the $\mathbf{NLO_{PS}}$ fit range $50 \text{ GeV} \le m_{lb} \le 150 \text{ GeV}$ $\mathbf{NLO_{NWA}^{NLOdec}}$ closer to $\mathbf{NLO_{full}}$ than $\mathbf{NLO_{PS}}$ m_{lb} lepton - b-jet invariant mass

full NLO corrections introduce significant shape changes and asymmetric scale uncertainties

Loopedia New Record Form:

	☐ loopedia.mpp.mpg.de	<u> </u>				
Graph e12 e3 34 5 e5 e — Masses 110 10 00 0 11 1						
Edit • : • Edit • Browse • : *	Home arXiv:1709.01266.					
Add new record						
Integrand type: Product of $(p^2 - m^2)^-n$	if other, please specify:	Hover over Field name for details				
Propagator powers (the n in $(p^2 - m^2)^{-n}$ for p P11P21P31P4	which result is valid, separate by comma if necessary, leave empty if n/a): 1 P5 P6 P6 P7 P					
Order(s) in ε (separate by comma, empty if n/a):						
Reducible: unknown 🗘 Num	ber of master integrals:					
Reference (arXiv: <i>yymm.nnnn</i> or hep- <i>xx/yymmnnn</i> preferred, empty if n/a):						
Relevant equations in reference:						
Authors:						
Description (package URL, dimension compute	d in, type of functions, Euclidean/physical kinematics, weight, free text, etc.):	Special chars for copy & paste: $\bar{q} \zeta \pi \prod \Sigma \infty \rightarrow - \leq \geq$				
Submitter (e-mail):						
Additional material (PDFs not on arXiv, Math Choose File no file selected Choose File no file selected Choose File no file selected Submit Reset	ematica/Maple/FORM/Python/Fortran programs, etc.):					