#### Search for Proton Decay in Super-Kamiokande

-8-5.8-s

#### Yusuke Suda

Mini-Workshop for High Energy Gamma Ray Astrophysics Max-Planck-Institute for Physics, Nov. 24, 2017

## Who am I

- I am Yusuke Suda from Univ. of Tokyo, Japan
- Master of Science (Mar. 2014)
  - "Research and Development of Large-Aperture Hybrid Photo-Detectors for Hyper-Kamiokande"
- Doctor of Philosophy (Sep. 2017)
  - "Search for **Proton Decay** Using an Improved Event Reconstruction Algorithm in Super-Kamiokande"
- First
- Postdoc at Center for High Energy gEophysics Research (CHEER), Earthquake Research Institute (ERI), UTokyo
  - Muon radiography (*Muography*) for geoscience



## What is Proton Decay

- Phenomena predicted by Grand Unified Theories (GUTs) of elementary particles
- Unification of three fundamental forces (EM, Weak, Strong)
  - Very high energy scale ( ≥10<sup>15</sup> GeV)
  - Solve electromagnetic charge quantization, etc.
  - Mixture between quarks and leptons → Proton decay
- Proton decay is the best tool to test GUTs!



Accelerators

#### **Proton Decay So Far**



- Long history of over 60 years. No significant candidate
- Super-Kamiokande (SK) is the top and still in predictions
- Proton decay may happen at any time
- Let's search proton decay in SK!

## Super-KamiokaNDE xperimer

- 50kton water Cherenkov detector
  - 1000m underground, Kamioka, JPN
- Record Č light (Q  $\cdot$  T) by 20-inch PMTs
- PID by Č ring pattern



|                              | SK1             | SK2            | SK3             | SK4                    |
|------------------------------|-----------------|----------------|-----------------|------------------------|
| Period                       | 1996-2001       | 2002-2005      | 2006-2008       | 2008-                  |
| Live time                    | 1489.2          | 798.6          | 518.1           | 2650.4<br>(~Sep. 2016) |
| Photocoverage<br>(# of PMTs) | 40%<br>(11,146) | 19%<br>(5,182) | 40%<br>(11,129) | 40%<br>(11,129)        |

Half of the all data 5

Outer Detector (veto)

41.4 m

**50kton Tank** 

Inner

Detector

39.3 m



#### **10<sup>33</sup> protons in inner detector**

10 years null observation of proton decay → Proton lifetime > 10<sup>34</sup> years

#### My target decay mode: $p \rightarrow e^{+}\pi^{0}$

- Most dominant in non-SUSY GUTs
- Most sensitive for SK



#### Decay time of π<sup>0</sup>: 8×10<sup>-17</sup> s Gamma conversion length: ~40cm

### **Proton Decay Simulation**

#### Super-Kamiokande IV

Run 999999 Sub 0 Event 98 16-08-14:18:22:43 Inner: 3867 hits, 8700 pe Outer: 5 hits, 5 pe Trigger: 0x07 D wall: 1109.2 cm Evis: 951.7 MeV

fiTQun MR #0 ID=350013313, -lnL=25214.6

#### Charge(pe)



Back-to-back topology  $\rightarrow$  Easily distinguish from atmospheric neutrinos



OD



## **Reconstruction Algorithm**

- Conventional: **APfit** 
  - Determine reconstruction params. step-by-step (vertex → #rings → PID → momentum)
  - Use charge&time information of "hit" PMT only
    - Momentum determination by using observed charge inside Č-cone w/ a half angle of 70° → Bias
  - Developed 20 years ago and written by Fortran (hard to maintain)
- New: fiTQun
  - Determine all params simultaneously by a maximum likelihood method
  - Use not only hit PMT information but also "unhit" PMT information
  - Initial development by the T2K experiment, written by C++ 11

# $\begin{aligned} \mathbf{fitQun} \\ L(\mathbf{x}) &= \prod_{j}^{\text{unhit}} \underbrace{P_{j}(\text{unhit}|\mathbf{x})}_{i} \underbrace{\prod_{i}^{\text{hit}} \{1 - P_{i}(\text{unhit}|\mathbf{x})\}}_{i} \underbrace{f_{q}(q_{i}|\mathbf{x})f_{t}(t_{i}|\mathbf{x})}_{\text{Hit PDF}} \\ \text{Unhit PDF} & \text{Hit PDF} & \text{Charge PDF} & \text{Time PDF}_{(\text{Poisson})} \end{aligned}$

- Fit params.  $\mathbf{x} = \{x, y, z, t, \theta, \phi, p\} \times (\# \text{ of rings})$
- Construct likelihood function for given ring(s) hypotheses
- Maximize likelihood for each event



## Validation of fiTQun

- Performance in MC was well examined, but treatment of real data was not enough to physics analysis
- I did
  - Check in data/MC likelihood distributions
  - Correction of time dependent detector params.
  - Estimation of energy scale uncertainty
    - Uncertainty 2.1%, same as APfit
  - Tuning of ring counting parameter



- Finally, fiTQun has been verified for SK-IV data/MC
  - Then, T2K experiment employed fiTQun for their analysis and announced a new hint for leptonic CP violation in summer 2017

#### Calibration of fiTQun

• PMT gain and water attenuation length vary with time



## Search for Proton Decay

- First application of fiTQun to proton decay
- First time of changing SK proton decay analysis framework
- Target decay mode:  $p \rightarrow e^+\pi^0$
- Hybrid search: APfit (SK1-3, null observation) + fiTQun (SK4)
- Selection criteria
  - 1. Fiducial volume
  - 2. Number of rings (2 or 3)
  - 3. PID (all shower ring, no Micheal-e)
  - 4.  $\pi^0$  mass (for 3-ring events)
  - 5. No gamma-ray from neutron capture
  - 6. Total invariant mass and momentum cut

- By changing selection criteria for fiTQun, I did
  - Expand fiducial volume by 10%
     Chance of discovery!
  - (22.5 kton → 24.7kton)
    Reduce # of BG events by arrpox. 30%
    - Tighter total invariant mass cut is applied
  - While keeping similar level of signal efficiency as APfit



- To enhance sensitivity, signal region is divided by two
  - Lower box: less BGs & systematics error (Fermi motion)
- #total BG in SK4: ~0.14 (0.19) events for fiTQun (APfit)



\*stat. error only 17

#### Result



- No candidate was found in SK-IV data for both fitters
- Combine with the other SK data (APfit, no candidates) and calculate lower lifetime limit by Bayes' theorem
- Lifetime limit: τ/B(p→e+π<sup>0</sup>) > 1.88×10<sup>34</sup> years @ 90% C.L.
  - 5% improvement from APfit-based analysis

#### Summary

- Proton decay is a smoking gun for GUTs
- Developed and validated the new event reconstruction algorithm, fiTQun
- Improved search for  $p \rightarrow e^+\pi^0$  with fiTQun was conducted
  - Same efficiency but fiducial volume +10%, #BGs -30%
- No candidate was found
- World leading proton lifetime limit: 1.88×10<sup>34</sup> years @ 90% C.L.
- Most stringent constraint for non-SUSY GUT

Detail information can be found in Suda's thesis http://www-sk.icrr.u-tokyo.ac.jp/sk/publications/index-e.html#doctor



#### Let's go as much as we can!

## **Think Bigger**



- Hyper-Kamiokande project (~10 times bigger than SK)
- Search region of proton decay will reach 10<sup>35</sup> years
- Many rich physics: CP violation, v mass hierarchy, SN relic etc.
- FiTQun is compatible with HK
- Photosensor is a key to success

#### **R&D of Hybrid Photo-Detector**

- One of candidates. Better performance than SK PMT
- Hope to use in HK (20-inch HPD is testing in water tank)



#### **Current Research**

- Muon radiography (*Muography*) @ Earthquake research institute, Japan
- Explore inner structure of volcanos and active fault by measuring cosmic-ray muon flux through target
- Commit to geophysics and disaster prevention
  - One of the few applications of high energy physics



#### **Active Fault**

- Muography of Atotsugawa fault (near Super-K)
- Estimation of 3D density profile of the fault by measuring muon flux (θ, φ) at each depth (Data taking is ongoing)
- I will evaluate expected muon flux at detector by GEANT4
- Working hard to publish the world's first result



#### **Transition of My Research**



## **Expected Future Work**

- Gamma-ray burst search @ CTA LST
  - GRB is the brightest explosion in the universe
  - Explore mechanisms of jet formation and particle acceleration especially for long GRBs with LST's high statistics data
- I would like to contribute to
  - Low energy threshold (20GeV or less) in order to detect GRBs
    - PMT calibration and analysis tool development utilizing my experience (fiTQun, HPD, etc.)
  - Pointing calibration in order to not miss GRBs
- Eager to accomplish the first measurement of a GRB by the ground based telescope