The LHC endeavour

ETHzürich

achievements and future plans

Outline:

LHC physics and achievements so far

General intro

The challenges ahead

How to face these challenges

The (not so small) print:
focus on the CMS experiment, for "practical" reasons....

How to explore the unkown

Collisions at the LHC

```
Centre-of-Mass Energy = 0.9-2.36-5-7-8-13/14 TeV
Bunch separation : 50-25 ns
Beam crossings : 20-40 Million / sec
p p-Collisions :~1 Billion / sec
Events to tape : ~1000/sec
```

Protons

Collisions at the LHC

Centre-of-Mass Energy = 0.9-2.36-5-7-8-13/14 TeV
Bunch separation : 50-25 ns
Beam crossings : 20-40 Million / sec pp-Collisions : ~ 1 Billion / sec Events to tape : ~1000 / sec

Collisions at the LHC

Centre-of-Mass Energy = 0.9-2.36-5-7-8-13/14 TeV Bunch separation : 50-25 ns
Beam crossings : 20-40 Million / sec

The basics...

$$
\mathrm{d} \sigma\left(\mathrm{~h}_{1} \mathrm{~h}_{2} \rightarrow c d\right)=\int_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \sum_{a, b} f_{a / \mathrm{h}_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{b / \mathrm{h}_{2}}\left(x_{2}, \mu_{F}^{2}\right) \mathrm{d} \hat{\sigma}^{(a b \rightarrow c d)}\left(Q^{2}, \mu_{F}^{2}\right)
$$

The basics...

$\mathrm{d} \sigma\left(\mathrm{h}_{1} \mathrm{~h}_{2} \rightarrow c d\right)=\int_{0}^{1} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \sum_{a, b} f_{a / \mathrm{h}_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{b / \mathrm{h}_{2}}\left(x_{2}, \mu_{F}^{2}\right) \mathrm{d} \hat{\sigma}^{(a b \rightarrow c d)}\left(Q^{2}, \mu_{F}^{2}\right)$
Hard Scattering = processes with large momentum transfer (Q^{2})
Represents only a tiny fraction of the total inelastic pp cross section ($\sim 70-80 \mathrm{mb}$)

$$
\text { eg. } \sigma(p p \rightarrow \mathbf{W}+X) \sim 150 \mathrm{nb} \sim 2 \cdot \mathbf{1 0}^{-6} \boldsymbol{\sigma}_{\text {tot }}(\mathbf{p p})
$$

The basics...

Hard Scattering = processes with large momentum transfer (Q^{2})
Represents only a tiny fraction of the total inelastic pp cross section ($\sim 70-80 \mathrm{mb}$)

$$
\text { eg. } \sigma(p p \rightarrow \mathbf{W}+X) \sim 150 \mathrm{nb} \sim 2 \cdot \mathbf{1 0}^{-6} \boldsymbol{\sigma}_{\text {tot }}(\mathbf{p p})
$$

Testing the SM

Testing the SM

Testing the SM

Testing the SM

Testing the SM

Testing the SM

Testing the SM

Delivery of (lots of) data

CMS Integrated Luminosity, pp

Stairway to

Standard Model Production Cross Section Measurements

Where are we now?

- The Higgs boson

- Couplings to vector bosons measured at the ~20\% level
\% Observation of coupling to tau leptons
© Observation of coupling to b- and top quarks

Where are we now?

- The Higgs boson
- Couplings to vector bosons measured at the ~20\% level
* Observation of coupling to tau leptons

Observation of coupling to b-and top quarks

- Searches for new Physics
- SUSY particles probed (and not found) up to ~2 TeV
* Heavy Vector Bosons excluded up to 3-4 TeV
\& and many (!) other limits....

Where are we now ?

- The Higgs boson
- Couplings to vector bosons measured at the ~20\% level
\% Observation of coupling to tau leptons
Observation of coupling to \mathbf{b} - and top quarks
- Searches for new Physics

SUSY particles probed (and not found) up to ~2 TeV
Heavy Vector Bosons excluded up to 3-4 TeV
\& and many (!) other limits....

- Closed-in on some very rare processes
${ }^{\circ} \mathrm{eg} . \mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ (at 10-9 level)

Where are we now?

- The Higgs boson
- Couplings to vector bosons measured at the ~20\% level
© Observation of coupling to tau leptons
Observation of coupling to \mathbf{b} - and top quarks
- Searches for new Physics

SUSY particles probed (and not found) up to ~2 TeV
Heavy Vector Bosons excluded up to 3-4 TeV
\& and many (!) other limits....

- Closed-in on some very rare processes

$$
\text { eg. } \left.B_{s \rightarrow \mu \mu} \quad \text { (at 10-9 level }\right)
$$

- Some anomalies in the flavour sector? coupled to LFV?

- The current precision, due to low statistics or systematics (see next), is not sufficient to probe most possible (Higgs) scenarios alternative to the SM: will the SM withstand more accurate tests?

A (incomplete) list of open questions

- The current precision, due to low statistics or systematics (see next), is not sufficient to probe most possible (Higgs) scenarios alternative to the SM: will the SM withstand more accurate tests?
- The Higgs mechanism has only been tested on a fraction of the SM particles, due to low statistics or systematics: do the other particles (e.g. muon, charm, etc) interact with the Higgs as predicted by the SM?

E Example: currently expected that more than $300 \mathrm{fb}^{-1}$ are required to establish $\mathrm{H} \rightarrow \mu \mu$ at 5σ

A (incomplete) list of open questions

- The current precision, due to low statistics or systematics (see next), is not sufficient to probe most possible (Higgs) scenarios alternative to the SM: will the SM withstand more accurate tests?
- The Higgs mechanism has only been tested on a fraction of the SM particles, due to low statistics or systematics: do the other particles (e.g. muon, charm, etc) interact with the Higgs as predicted by the SM?
Example: currently expected that more than $300 \mathrm{fb}^{-1}$ are required to establish $\mathrm{H} \rightarrow \mu \mu$ at 5σ
Q What gives mass to the Higgs?
\& Obvious question, with a trivial answer in the SM: the Higgs gives mass to itself! But we have to "measure it and see" !

A (incomplete) list of open questions

- The current precision, due to low statistics or systematics (see next), is not sufficient to probe most possible (Higgs) scenarios alternative to the SM: will the SM withstand more accurate tests?
- The Higgs mechanism has only been tested on a fraction of the SM particles, due to low statistics or systematics: do the other particles (e.g. muon, charm, etc) interact with the Higgs as predicted by the SM?
Example: currently expected that more than $300 \mathrm{fb}^{-1}$ are required to establish $\mathrm{H} \rightarrow \mu \mu$ at 5σ
Q What gives mass to the Higgs?
\& Obvious question, with a trivial answer in the SM: the Higgs gives mass to itself! But we have to "measure it and see" !
- Are there more Higgs bosons?

I Most theories beyond the SM have more Higgs bosons

A (incomplete) list of open questions

- The current precision, due to low statistics or systematics (see next), is not sufficient to probe most possible (Higgs) scenarios alternative to the SM: will the SM withstand more accurate tests?
- The Higgs mechanism has only been tested on a fraction of the SM particles, due to low statistics or systematics: do the other particles (e.g. muon, charm, etc) interact with the Higgs as predicted by the SM?
Example: currently expected that more than $300 \mathrm{fb}^{-1}$ are required to establish $\mathrm{H} \rightarrow \mu \mu$ at 5σ
Q What gives mass to the Higgs?
\& Obvious question, with a trivial answer in the SM: the Higgs gives mass to itself! But we have to "measure it and see" !
- Are there more Higgs bosons?
\& Most theories beyond the SM have more Higgs bosons
- What protects the Higgs mass from "exploding"??

Is there new physics, and where?

A (incomplete) list of open questions

- The current precision, due to low statistics or systematics (see next), is not sufficient to probe most possible (Higgs) scenarios alternative to the SM: will the SM withstand more accurate tests?
- The Higgs mechanism has only been tested on a fraction of the SM particles, due to low statistics or systematics: do the other particles (e.g. muon, charm, etc) interact with the Higgs as predicted by the SM?
Example: currently expected that more than $300 \mathrm{fb}^{-1}$ are required to establish $\mathrm{H} \rightarrow \mu \mu$ at 5σ
Q What gives mass to the Higgs?
Obvious question, with a trivial answer in the SM: the Higgs gives mass to itself! But we have to "measure it and see" !
- Are there more Higgs bosons?
\& Most theories beyond the SM have more Higgs bosons
- What protects the Higgs mass from "exploding"??

Is there new physics, and where?
Q Are the current flavour anomalies our first glimpse of such new physics?

Already now, we are often hitting the systematics wall; some examples:

overall ATLAS-CMS Higgs combination

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt })_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

Higgs to tau tau:
$1.09_{-0.15}^{+0.15}$ (stat) $)_{-0.15}^{+0.16}$ (syst) $)_{-0.08}^{+0.10}$ (theo $)_{-0.12}^{+0.13}$ (bin-by-bin),

Already now, we are often hitting the

 systematics wall; some examples:overall ATLAS-CMS Higgs combination

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt })_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

Higgs to tau tau:

$1.09_{-0.15}^{+0.15}(\text { stat })_{-0.15}^{+0.16}(\text { syst })_{-0.08}^{+0.10}(\text { theo })_{-0.12}^{+0.13}$ (bin-by-bin)

Already now, we are often hitting the systematics wall; some examples:

overall ATLAS-CMS Higgs combination

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt })_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

Higgs to tau tau:
$1.09_{-0.15}^{+0.15}$ (stat) $)_{-0.15}^{+0.16}$ (syst) $)_{-0.08}^{+0.10}$ (theo $)_{-0.12}^{+0.13}$ (bin-by-bin),

Already now, we are often hitting the systematics wall; some examples:

overall ATLAS-CMS Higgs combination

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt })_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

Higgs to tau tau:

$1.09_{-0.15}^{+0.15}$ (stat) $)_{-0.15}^{+0.16}$ (syst $)_{-0.08}^{+0.10}$ (theo) $)_{-0.12}^{+0.13}$ (bin-by-bin),

Already now, we are often hitting the systematics wall; some examples:

overall ATLAS-CMS Higgs combination

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt })_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

Higgs to tau tau:

$1.09_{-0.15}^{+0.15}$ (stat) $)_{-0.15}^{+0.16}$ (syst) $)_{-0.08}^{+0.10}$ (theo) $)_{-0.12}^{+0.13}$ (bin-by-bin),

Already now, we are often hitting the systematics wall; some examples:

overall ATLAS-CMS Higgs combination

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt })_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

Higgs to tau tau:

$1.09_{-0.15}^{+0.15}$ (stat) $)_{-0.15}^{+0.16}$ (syst) $)_{-0.08}^{+0.10}$ (theo) $)_{-0.12}^{+0.13}$ (bin-by-bin)

How to fight this wall:

How to fight this wall:

- Hunt for the very rare
the obvious, statistics limited by definition

How to fight this wall:

- Hunt for the very rare
© the obvious, statistics limited by definition
- Attack new/difficult/extreme regions of phase space

How to fight this wall:

- Hunt for the very rare
© the obvious, statistics limited by definition
- Attack new/difficult/extreme regions of phase space
- More statistics allows for more "calibration/tuning/ cross checks/constraints", thus reduce systematics

How to fight this wall:

- Hunt for the very rare
\% the obvious, statistics limited by definition
- Attack new/difficult/extreme regions of phase space
- More statistics allows for more "calibration/tuning/ cross checks/constraints", thus reduce systematics
- Provide (even) better theoretical predictions

How to fight this wall:

- Hunt for the very rare
\% the obvious, statistics limited by definition
- Attack new/difficult/extreme regions of phase space
- More statistics allows for more "calibration/tuning/ cross checks/constraints", thus reduce systematics
- Provide (even) better theoretical predictions
- What is needed is not necessarily precision in terms of small uncert., we need sensitivity

How to fight this wall:

- Hunt for the very rare
© the obvious, statistics limited by definition
- Attack new/difficult/extreme regions of phase space
- More statistics allows for more "calibration/tuning/ cross checks/constraints", thus reduce systematics
- Provide (even) better theoretical predictions
- What is needed is not necessarily precision in terms of small uncert., we need sensitivity
- And of course: make sure you have an excellent detector!

The Plan

The Plan

so far, recorded only $\sim 5 \%$ of total expected data set!

Another look at the plan

Another look at the plan

HL-LHC Physics Objectives in a nutshell

- Higgs boson
- Push the couplings measurements to the few-\% level
© Study Higgs production at large transv. mom.
\& A key deliverable: Higgs self-coupling!

HL-LHC Physics Objectives in a nutshell

- Higgs boson
\& Push the couplings measurements to the few-\% level

Study Higgs production at large transv. mom.
\& A key deliverable: Higgs self-coupling!

- Searches for New Physics
- SUSY: explore difficult parameter regions, go for "weak production" modes
Exotica: push the limits, probe small prod. rates

Direct stau pair production:

Discovery reach m (stau) $<430-520 \mathrm{GeV}$
current exclusion limits about 110 GeV

HL-LHC Physics Objectives in a nutshell

- Higgs boson
\& Push the couplings measurements to the few-\% level
. Study Higgs production at large transv. mom.
\& A key deliverable: Higgs self-coupling!
- Searches for New Physics
- SUSY: explore difficult parameter regions, go for "weak production" modes
Exotica: push the limits, probe small prod. rates
- Use (rare) flavour processes to look for the new
\& eg. anomalous top couplings, FCNC
\& $B_{d} \rightarrow \mu \mu$ at the 5σ level, $\delta\left(B_{d} \mu \mu / B_{s} \mu \mu\right) \sim 20 \%$
closing-in on (excluding or confirming) the recent flavour anomalies?

Direct stau pair production:

The power of large $\mathbf{p T}_{T}$

Higgs as a BSM probe: precision vs dynamic reach

$$
L=L_{S M}+\frac{1}{\Lambda^{2}} \sum_{k} \mathcal{O}_{k}+\cdots
$$

$$
O=|\langle f| L| i\rangle\left.\right|^{2}=O_{S M}\left[1+O\left(\mu^{2} / \Lambda^{2}\right)+\cdots\right]
$$

The power of large p_{T}

Higgs as a BSM probe: precision vs dynamic reach

$$
L=L_{S M}+\frac{1}{\Lambda^{2}} \sum_{k} \mathcal{O}_{k}+\cdots
$$

$$
O=|\langle f| L| i\rangle\left.\right|^{2}=O_{S M}\left[1+O\left(\mu^{2} / \Lambda^{2}\right)+\cdots\right]
$$

For H decays, or inclusive production, $\mu \sim \mathrm{O}\left(\mathrm{v}, \mathrm{mH}_{\mathrm{H}}\right)$

$$
\begin{array}{r}
\delta O \sim\left(\frac{v}{\Lambda}\right)^{2} \sim 6 \%\left(\frac{\mathrm{TeV}}{\Lambda}\right)^{2} \Rightarrow \text { precision probes large } \Lambda \\
\text { e.g. } \delta O=1 \% \Rightarrow \Lambda \sim 2.5 \mathrm{TeV}
\end{array}
$$

The power of large p_{T}

Higgs as a BSM probe: precision vs dynamic reach

$$
L=L_{S M}+\frac{1}{\Lambda^{2}} \sum_{k} \mathcal{O}_{k}+\cdots
$$

$$
O=|\langle f| L| i\rangle\left.\right|^{2}=O_{S M}\left[1+O\left(\mu^{2} / \Lambda^{2}\right)+\cdots\right]
$$

For H decays, or inclusive production, $\mu \sim \mathrm{O}\left(\mathrm{v}, \mathrm{m}_{\mathrm{H}}\right)$

$$
\begin{array}{r}
\delta O \sim\left(\frac{v}{\Lambda}\right)^{2} \sim 6 \%\left(\frac{\mathrm{TeV}}{\Lambda}\right)^{2} \Rightarrow \text { precision probes large } \Lambda \\
\text { e.g. } \delta O=1 \% \Rightarrow \Lambda \sim 2.5 \mathrm{TeV}
\end{array}
$$

For H production off-shell or with large momentum transfer $\mathrm{Q}, \mu \sim \mathrm{O}(\mathrm{Q})$

$$
\delta O \sim\left(\frac{Q}{\Lambda}\right)^{2} \quad \begin{array}{ll}
& \text { kinematic reach probes large } \Lambda \text { even if } \\
& \text { precision is low }
\end{array}
$$

$$
\text { e.g. } \delta O=15 \% \text { at } Q=1 \mathrm{TeV} \Rightarrow \Lambda \sim 2.5 \mathrm{TeV}
$$

The power of large p_{T}

Higgs as a BSM probe: precision vs dynamic reach

$$
\begin{aligned}
& L=L_{S M}+\frac{1}{\Lambda^{2}} \sum_{k} \mathcal{O}_{k}+\cdots \\
& O=|\langle f| L| i\rangle\left.\right|^{2}=O_{S M}\left[1+O\left(\mu^{2} / \Lambda^{2}\right)+\cdots\right]
\end{aligned}
$$

For H decays, or inclusive production, $\mu \sim \mathrm{O}\left(\mathrm{v}, \mathrm{m}_{\mathrm{H}}\right)$

$$
\begin{array}{r}
\delta O \sim\left(\frac{v}{\Lambda}\right)^{2} \sim 6 \%\left(\frac{\mathrm{TeV}}{\Lambda}\right)^{2} \Rightarrow \text { precision probes large } \Lambda \\
\text { e.g. } \delta O=1 \% \Rightarrow \Lambda \sim 2.5 \mathrm{TeV}
\end{array}
$$

Ultra-precise measurements of differential cross sections (ZZ channel shown) ~ 4-9\% (stat.)

For H production off-shell or with large momentum transfer $\mathrm{Q}, \mu \sim \mathrm{O}(\mathrm{Q})$

$$
\left.\begin{array}{rl}
\delta O \sim\left(\frac{Q}{\Lambda}\right)^{2} & \Rightarrow \text { kinematic reach probes large } \Lambda \text { even if } \\
\text { precision is low }
\end{array}\right\} \text { e.g. } \delta O=15 \% \text { at } \mathrm{Q}=1 \mathrm{TeV} \Rightarrow \Lambda \sim 2.5 \mathrm{TeV} \text {. }
$$

Rare processes: examples

- Di-Higgs production: a key process

- Probe the Higgs potential!
- Cross section very small: ~33 fb-1 (~1000 smaller than single Higgs prod !)
\& Current projections:

- ~30\% precision on signal yield (assuming SM)
- expect to exclude zero self-coupling at 95\% C.L.

Rare processes: examples

- Di-Higgs production: a key process
* Probe the Higgs potential!
- Cross section very small: ~33 fb-1 (~1000 smaller than single Higgs prod !)
\& Current projections:

- ~30\% precision on signal yield (assuming SM)
- expect to exclude zero self-coupling at 95\% C.L.
- Rare (or new) Higgs decays

Higgs to two muons (at $\sim 15 \%$ level)
Higgs to $\mathbf{Z Y}$ (at $\sim 10 \%$ level)
\& (VBF) Higgs to "invisible"

Searches: the new frontiers

following S. Gori, LP17 and J. Alcaraz, IMFP17

- Leave no stone unturned

- important focus on electro-weak particles (eg Winos, Higgsinos, Binos)
- could be part of the Dark Matter story

Searches: the new frontiers

- Leave no stone unturned
* important focus on electro-weak particles (eg Winos, Higgsinos, Binos)
- could be part of the Dark Matter story
\& example: $\tilde{t}_{1} \tilde{t}_{1}$ production

$$
\mathrm{m}_{\tilde{t}_{1}}-\mathrm{m}_{\tilde{x}_{1}}=173 \mathrm{GeV}
$$

\& 300 to $3000 \mathrm{fb}^{-1} \Rightarrow$ difference between 'a little excess' and 'discovery’

- SUSY: difficult parameter regions

Searches: the new frontiers

Q Leave no stone unturned
important focus on electro-weak particles (eg Winos, Higgsinos, Binos)

- could be part of the Dark Matter story
- SUSY: difficult parameter regions
* example: $\tilde{\mathfrak{t}}_{1} \tilde{t}_{1}$ production

$$
m_{\mathrm{t}_{1}}-\mathrm{m}_{\tilde{x}_{1}^{0}}=173 \mathrm{GeV}
$$

\& 300 to $3000 \mathrm{fb}^{-1} \Rightarrow$ difference between 'a little excess' and 'discovery'

- Heavy Vector Bosons
decays to leptons: reach up to $\sim 6 \mathrm{TeV}$
decays to top quarks: up to $\sim 4 \mathrm{TeV}$
 (limits today: 2 TeV)

The experimental challenges (and proposed solutions)

but first a short pre-amble

The Particle-Flow concept

Q Use a global event description ("particle flow") :

The Particle-Flow concept

Q Use a global event description ("particle flow") :

- In multi-jet events, only 10% of the energy goes to neutral (stable) hadrons ($\sim 60 \%$ charged, $\sim 30 \%$ neutral electromagnetic)
- Use a global event description :
- Optimal combination of information from all subdetectors
* Returns a list of reconstructed particles (e,mu,photons,charged and neutral hadrons)
. Used as building blocks for jets, taus, missing transverse energy, isolation and PU particle ID

Pile-up (1)

Number of simultaneous proton-proton collisions per bunch crossing:
$L x$ total cross section x bunch separation time
$\sim(5-7.5) 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 100 \mathrm{mb} \times 25 \mathrm{~ns} \sim$ 125-190!

Number of simultaneous proton-proton collisions per bunch crossing:
$L x$ total cross section x bunch separation time
$\sim(5-7.5) 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times 100 \mathrm{mb} \times 25 \mathrm{~ns} \sim$ 125-190!

Each of these:
~ 6 charged particles per unit rapidity, over range of +- 5 units in rapidity: O(10000) particles per collision !!

Pile-up (2)

Pile-up (2)

Pile-up (2)

Pile-up (2)

distributed over $\sim 5 \mathrm{~cm}$, or: $\sim 150-200 \mathrm{ps}$!

CMS
 Pile-up (2)

The Trigger Challenge (1)

L1 Trigger

Finite Bandwidth!

The Trigger Challenge (1)

Finite Bandwidth!

The Trigger Challenge (1)

The Trigger Challenge (1)

The Trigger Challenge (2)

The Trigger Challenge (2)

ETHzürich

Example: Muon rate
~power law

Also: Trigger rate highly non-linear with pile-up!

G. Dissertori

The Trigger Challenge (2)

ETHzürich

Example: Muon rate
~power law

Also: Trigger rate highly non-linear with pile-up!

G. Dissertori

The Trigger Challenge (2)

ETHzürich

Example: Muon rate
~power law

Also: Trigger rate highly non-linear with pile-up!

G. Dissertori

So : Detector requirements

- High granularity, fast readout, radiation hardness

So : Detector requirements

- High granularity, fast readout, radiation hardness
- minimize pile-up particles in same detector element

So : Detector requirements

- High granularity, fast readout, radiation hardness
- minimize pile-up particles in same detector element
* precise and efficient
 tracking and vertex reconstruction

So : Detector requirements

- High granularity, fast readout, radiation hardness
- minimize pile-up particles in same detector element
* precise and efficient
 tracking and vertex reconstruction
* add timing information

So : Detector requirements

- High granularity, fast readout, radiation hardness
\& minimize pile-up particles in same detector element
\& precise and efficient
 tracking and vertex reconstruction
add timing information
- fast response time for electronics, enough latency (for adding tracking information) and large throughput rate for triggers

So : Detector requirements

- High granularity, fast readout, radiation hardness
- minimize pile-up particles in same detector element
* precise and efficient tracking and vertex reconstruction
\& add timing information
* fast response time for electronics, enough latency (for adding tracking information) and large throughput rate for triggers

In a nutshell....

Trigger/HLT/DAQ

- Track information in hardware event selection
- 750 kHz hardware event selection
- 7.5 kHz events registered
\qquad
ion

Barrel EM calorimeter

- New electronics
- Low operating temperature \simeq 10

Muon systems

- New DT \& CSC electronics
- New chambers $1.6<\eta<2.4$

Muon tagging $2.4<\eta<3$

New Tracker

- Rad. Tolerant - light
- High Definition measurement
- 40 MHz selective readout for hardware trigger
- Extended Pixel coverage to $\eta \approx 3.8$

In a nutshell....

Trigger/HLT/DAQ

- Track information in hardware event selection
- 750 kHz hardware event selection
- 7.5 kHz events registered

Barrel EM calorimeter

- New electronics
- Low operating temperature \simeq 10°

Muon systems

- New DT \& CSC electronics
- New chambers $1.6<\eta<2.4$

Muon tagging $2.4<\eta<3$

Upgrades of very large scope: complexity and size similar to original construction!
New Tracker

- Rad. Tolerant - light
- High Definition measurement
- 40 MHz selective readout for hardware trigger
- Extended Pixel coverage to $\eta \approx 3.8$

Beam radiation and luminosity
Common systems and infrastructure

In a nutshell....

Trigger/HLT/DAQ

- Track information in hardware event selection
- 750 kHz hardware event selection
- 750 kHz hardware event s

New Tracker

- Rad. Tolerant
- 5D measurement

Upgrades of very large scope: complexity and size similar to original construction!

- Rad. Tolerant - light
- High Definition measurement
- 40 MHz selective readout for hardware trigger
- Extended Pixel coverage to $\eta \approx 3.8$

Beam radiation and luminosity
Common systems and infrastructure

"CMS likes to do bold projects...." (J. Butler) Obviously, just the same is true for the ATLAS upgrades...

A new Tracker, with Trigger

Most ambitious Tracker project ever.

Higher granularity
(>2 billion pixels and strips!) less material, large angular coverage.

Will maintain and even improve the excellent tracking performance of CMS

A new Tracker, with Trigger

Most ambitious
Tracker project ever.

Higher granularity
(>2 billion pixels and strips!)
less material, large angular coverage.

Wif maintain and even improve the excellent tracking performance of CMS Design also driven by req. to trigger on tracks!
(a)

A new Tracker, with Trigger

Most ambitious Tracker project ever.

Higher granularity
(>2 billion pixels and strips!) less material, large angular coverage.

Wif maintain and even improve the excellent tracking performance of CMS Design also driven by req. to trigger on tracks!

(a)

Sep 18

[^0]
A new forward calorimeter

A new forward calorimeter

Entirely new endcap calorimeter!
High granularity silicon detector with tungsten/brass absorber (plastic scintillator and brass absorber in back part)

a "first" for a hadron collider exp.!

A new forward calorimeter

Entirely new endcap calorimeter!
High granularity silicon detector with tungsten/brass absorber (plastic scintillator and brass absorber in back part)

a "first" for a hadron collider exp.!

$600 \mathrm{~m}^{2} \mathrm{Si}$ 6 M channels

Timing information

Timing information

Timing information

Timing information

Dedicated timing detectors proposed in the barrel and the endcap.

Aim: resolution of $\mathbf{\sim 3 0} \mathrm{ps}$

Timing information

Dedicated timing detectors proposed in the barrel and the endcap.

Aim: resolution of ~ 30 ps

For example: enhancement by ~20 \% (!) in signal yield of HH (bbyy)

And not to be forgotten:

the computing challenge!

Just scaling what we have doesn't work!

Community is working on this intensively HSF Community White Paper WLCG Strategy Document

And not to be forgotten:

the computing challenge!

Intensive R\&D and follow industry developments (both hardware and software)
particularly "hot topic"
Machine learning (deep learning)
applications in all areas

Just scaling what we have doesn't work!

Community is working on this intensively HSF Community White Paper WLCG Strategy Document

(simulation, reconstruction, monitoring, analysis...)

Concluding...

In summary, the scenarios are:

In summary, the scenarios are:

Q The "no-matter-what-the-LHC-finds" scenario:

* push to a corner the tests of SM properties of the Higgs boson
(measure rare Higgs decays (e.g. $\mathrm{H} \rightarrow \mu \mu$ and $\mathrm{H} \rightarrow \mathrm{Z} \gamma$ couplings)
\& measure the Higgs self-coupling
* explore up-side-down the SM dynamics at the $\mathrm{GeV} \rightarrow \mathrm{TeV}$ scale, from flavour physics in B decays, to TeV -scale scattering of W bosons

In summary, the scenarios are:

Q The "no-matter-what-the-LHC-finds" scenario:
\% push to a corner the tests of SM properties of the Higgs boson
(measure rare Higgs decays (e.g. $\mathrm{H} \rightarrow \mu \mu$ and $\mathrm{H} \rightarrow \mathrm{Z} \gamma$ couplings)
\& measure the Higgs self-coupling
I explore up-side-down the SM dynamics at the $\mathrm{GeV} \rightarrow \mathrm{TeV}$ scale, from flavour physics in B decays, to TeV -scale scattering of W bosons

- The"LHC-makes-a-discovery" scenario:
what is it exactly that was discovered? given current LHC constraints, $300 \mathrm{fb}^{-1}$ won't be enough to explore new physics to be found during Run 2 or beyond
- If SUSY, how do we know? where are the partners of leptons, gauge bosons, quarks, Higgs, etc? what else is there?
- If mising energy: is it really the Dark Matter particle?
- If Z ': what is it? How does it couple?

In summary, the scenarios are:

Q The "no-matter-what-the-LHC-finds" scenario:
\% push to a corner the tests of SM properties of the Higgs boson
measure rare Higgs decays (e.g. $\mathrm{H} \rightarrow \mu \mu$ and $\mathrm{H} \rightarrow \mathrm{Z} \gamma$ couplings)
\& measure the Higgs self-coupling
I explore up-side-down the SM dynamics at the $\mathrm{GeV} \rightarrow \mathrm{TeV}$ scale, from flavour physics in B decays, to TeV -scale scattering of W bosons

- The"LHC-makes-a-discovery" scenario:
what is it exactly that was discovered? given current LHC constraints, $300 \mathrm{fb}^{-1}$ won't be enough to explore new physics to be found during Run 2 or beyond
- If SUSY, how do we know? where are the partners of leptons, gauge bosons, quarks, Higgs, etc? what else is there?
- If mising energy: is it really the Dark Matter particle?
- If Z ': what is it? How does it couple?
- The "still-don't-know-what's-next" scenario

LHC is the only guaranteed machine we have. If nothing else is approved within the next 10-15 years, we must rely on HL-LHC and possible further evolutions of the LHC complex to guarantee the future of our exploration

Conclusions

Conclusions

- Exploration of a new territory has just begun and, for the first time, without solid theoretical guidance

Conclusions

- Exploration of a new territory has just begun and, for the first time, without solid theoretical guidance
- Extensive physics program identified for the HL-LHC, in order
\& to probe our new "gold-mine", the Higgs (aka the electroweak symmetry breaking sector)
and to explore new territories beyond the Standard Model

Conclusions

- Exploration of a new territory has just begun and, for the first time, without solid theoretical guidance
- Extensive physics program identified for the HL-LHC, in order
to probe our new "gold-mine", the Higgs (aka the electroweak symmetry breaking sector)
and to explore new territories beyond the Standard Model
- New Physics might show up as a coherent set of (subtle) deviations from the SM predictions, in several places
precision physics time has come...
huge room (and need!) for
- new and clever ideas
- new methods (eg. Machine Learning tools)
- new paradigms,

Conclusions

- Exploration of a new territory has just begun and, for the first time, without solid theoretical guidance
- Extensive physics program identified for the HL-LHC, in order
© to probe our new "gold-mine", the Higgs (aka the electroweak symmetry breaking sector)
and to explore new territories beyond the Standard Model
- New Physics might show up as a coherent set of (subtle) deviations from the SM predictions, in several places
precision physics time has come...
huge room (and need!) for
- new and clever ideas
- new methods (eg. Machine Learning tools)
- new paradigms,
- The detector upgrades address the challenges posed by the LHC machine conditions and the requirements from physics

Thank you for your attention!

[^0]: G. Dissertori

