How to Build a Modern Calorimeter -The CALICE (AHCAL) Story

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- September 7th, 2018
- IMPRS Young Scientist Workshop, Schloss Ringberg
 - Christian Graf

Calorimetry

- **Calorimetry in HEP:** Measure energy by absorption ullet
- Two different length scales for $em(X_0)$ and hadronic ulletshowers (λ_l)
- *Electromagnetic* and *hadronic* calorimeter
- Often: sampling calorimeter •
 - Active layer / absorber -
 - More compact
 - Cheaper

 \sim

Jet Energy Resolution

- Jet Energy: sum up all the energy in a *cone* •
- Hadronic calorimeter usually has worst energy resolution •
- If we could separate single particles in a jet we can use the best suited detector for each!

Detector	Particles	ATLAS	
Tracker	Electrons, Muons, Pions,	5*10 ⁻⁵ pt	5*1
Em Cal	Photons, Electrons, Pions,	10% / √E ⊕ 1%	3%
Had Cal	Neutrons, Pions, Kaons,	50% / √E ⊕ 3%	10

Go with the Flow

- **Particle flow algorithms** may enhance jet energy resolution by using best suited detector •
 - Charged particles will be measured in the tracker, photons in the ECAL, neutral hadrons in the HCAL
- Each shower in the calorimeters needs to be assigned to the correct track ٠

Content of a "typical" jet:

- 60% charged particles
- 30% photons
- 10% neutral hadrons
- 1% neutrinos

•

Go with the Flow

- For future e⁺e⁻ colliders: Design detector optimized for particle flow
- "CMS like" detector: •
 - Calorimeters inside magnets •
 - Strong magnetic field •

Christian Graf

ATT I Lumi section Muon P₋ = 45.8 GeV $\eta = 0.98$ b-tagged jet forward jet high discriminator value P_ = 37.6 GeV $P = 61.9 \, GeV$ Units $- \sigma_{\rm m}/{\rm m} = 1\%$ $-\sigma_{\rm m}^{\rm m}/{\rm m} = 2.5\%$ Arbitrary $-\sigma_{\rm m}^{\rm m}/{\rm m} = 5\%$ $-\sigma_{m}^{...}/m = 10\%$ 2 70 90 100 110 120 80 60 Mass [GeV]

CALICE

- **Aim**: Development of new technologies for calorimetry with highly granular detectors
- Several technologies under study
- This talk: focus on analog hadronic calorimeter (AHCAL)

Si-W ECAL

RPC-DHCAL, Fe&W

GRPC-SDHCAL, Fe

Christian Graf

Silicon Photomultiplier

- Silicon Photomultipliers (SiPMs) are a key technology for scintillator based highly granular calorimeters
- Semiconductor photodetectors •
 - Small size \checkmark

•

Low costs

Photomultiplier tube

Physics Prototype

2001	2006	2015	201
CALICE	Physics	Technological	Prov
founded	prototype	prototype	of te

- Scintillator tiles of different sizes •
- Read out by wave length shifting fibers •
- ~8'000 channels •
- Combined test beams with ECAL & • Tailcatcher

Physics Prototype - Software Compensation

- Enhance energy reconstruction by software compensation
- Non-compensating calorimeters give different response for electromagnetic and hadronic part of shower
- Large fluctuations in fraction of electromagnetic part
- Exploit granularity of detector: Apply different weights to cells with high energy depositions (indicate et shower)

AHCAL - Concept

Technological Prototype

2001	2006	2015	201
CALICE	Physics	l Technological	Pro
founded	prototype	prototype	of te

- Build a prototype within the specifications of a real detector
- Integrated elec
- Power consum
- Cooling

•

 \bullet

- Mass productic
- Testing different tech
- Different SiPMs / scintillating tile designs

Christian Graf

Technological Prototype

2001	2006	2015	201
CALICE	Physics	Technological	Pro
founded	prototype	prototype	of to

- Testing new features:
 - Timing capabilities
 - Power pulsing
 - Temperature compensation
- Test in high magnetic fields

Large Technological Prototype

2001	2006	2015	207
CALICE	Physics	Technological	Pro
founded	prototype	prototype	of te

- Prototype with nearly 22'000 channels in 38 layers
- Large scale production •
 - Injection moulded tiles
 - Automated tile wrapping (*start in Oct '17*)
 - Pick and place machine (*start in Nov '17*)
- Two test beam campaigns • in May / June at CERN
- Final detector will have ~10M channels \bullet

First Impressions from Recent Test Beams

Christian Graf

First Impressions from Recent Test Beams

Christian Graf

Young Scientist Workshop - Ringberg - September '18

15

- CALICE develops highly granular • calorimeter for particle flow focussed future linear collider experiments
 - Technology used / considered in various other experiments:
 - CMS HGCAL
 - Dune
 - Two successful test beam campaigns with a large AHCAL technological prototype with nearly 22'000 channels

