Applications of a Highly Granular Electromagnetic Calorimeter in the DUNE Experiment

Lorenz Emberger

Ringberg Young Scientists Workshop 7.9.2018

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Neutrino Oscillations

- 1. Neutrino flavour oscillation verified \rightarrow Neutrinos are massive
- 2. Flavour eigenstates are a superposition of the mass eigenstates (predicted in 1957)
- $3. m_2 > m_1$
- 4. All mixing angles are > 0

Neutrino Oscillations

What we don't know:

- **1.** Is $m_3 > m_{1,m_2}$ or $m_3 < m_{1,m_2}$?
- 2. Is CP violation also manifested in neutrino oscilla with θ_{13} being > 0? (T2K δ_{CP} best fit: ~ -1.7)

These questions are addressed by long baseline neutrino experiments

Lorenz Emberger

- Neutrino flavour oscillation verified → Neutrinos are massive
- 2. Flavour eigenstates are a superposition of the mass eigenstates (predicted in 1957)
- $3. m_2 > m_1$
- 4. All mixing angles are > 0

ations
$$\begin{cases} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{12}s_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{12}s_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{12}s_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{12}s_{13}s_{13}e^{i\delta} & s_{23}c_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}s_{13}e^{i\delta} & s_{23}c_{13}s_{13}s_{13}e^{i\delta} & s_{23}c_{13}s_{13}s_{13}e^{i\delta} & s_{23}c_{13}s_{13}s_{13}$$

DUNE Physics Program

- DUNE is a Long Baseline Neutrino Experiment using a broad-band v_µ beam ulletproduced with an accelerator
- It consists of two different detectors, separated by 1300 km

DUNE Physics Program

- DUNE is a Long Baseline Neutrino Experiment using a broad-band v_{μ} beam produced with an accelerator
- It consists of two different detectors, separated by 1300 km

- It measures the v_e appearance and v_μ disappearance in the oscillated v_μ beam
 - To determine the neutrino mass hierarchy
 - Effects of CP violation and neutrino mass hierarchy on the oscillation probability disentangle for long baselines
 - To search for CP-violation in differences of the v_e /anti- v_e appearance
 - $P(\nu_{\mu} \rightarrow \nu_{e}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ if CP is conserved

DUNE Experiment

• The Long Baseline Neutrino Facility at Fermilab generates a high intensity, broadband vµ/anti-vµ beam within an energy range of 0.5 to 5 GeV

Far Detector: Liquid Argon TPC to measure oscillated spectrum - will see CP violation in v_e/anti-v_e appearance

Near Detector: Measures beam before oscillation, required to understand initial flux and cross sections to understand FD signal

- ~1 mile underground
- 4 liquid argon TPCs with 10kt fiducial volume each
- High resolution 3D image of neutrino interactions to achieve good particle separation
- Current status: prototypes at CERN

Main physics programme:

• Measure v_e/anti-v_e appearance via CC neutrino-nucleon interactions ➡Needs precise rate measurement from <u>near detector</u>

Ancillary programme:

- Search for proton decay: e.g. $P \rightarrow K^+ \overline{\nu}$
- Detect neutrinos from e.g. core collapse supernova
- Additional...

- ~1 mile underground
- 4 liquid argon TPCs with 10kt fiducial volume each
- High resolution 3D image of neutrino interactions to achieve good particle separation
- Current status: prototypes at CERN

DUNE Near Detector Tasks

- Measure the energy spectrum of the beam, background rates and contamination
 - Provide a precise extrapolation of event rates in the far detector
- Two different measurements:

Beam energy spectrum

CC inelastic scattering

DUNE Near Detector Tasks

- Measure the energy spectrum of the beam, background rates and contamination
 - Provide a precise extrapolation of event rates in the far detector
- Two different measurements:

• $\pi^0 \rightarrow \gamma \gamma$ (R=98.8) events can mimic v_e signals (electrons) in the far detector (overlapping sho

Possible layout: Liquid Argon TPC followed by a High Pressure Gaseous Argon TPC surrounded by an electromagnetic calorimeter and magnet

Additional physics programme: Sterile neutrinos, structure of nucleons

- ArgonCube mainly used to measure the energy spectrum of the beam \rightarrow higher interaction rates because of higher argon density
- High pressure TPC also used to measure cross sections of rare interactions
 - \rightarrow lower detection threshold than liquid argon

Possible layout: Liquid Argon TPC followed by a High Pressure Gaseous Argon TPC surrounded by an electromagnetic calorimeter and magnet

High timing resolution of the ECal is beneficial for disentangling the TPC image \rightarrow TPC has low efficiency for neutral particles (neutrons, photons,...) ECal hits associated to TPC activity can provide T0 time for events

- Duration of one neutrino spill ~10µs \rightarrow Pileup in slow detectors due to high beam intensity
- Many interactions inside ECal
- Majority of interactions in structures of surrounding hall (not shown)
 - →Background source
 - \rightarrow No defined IP like in collider experiments

Possible layout: Liquid Argon TPC followed by a High Pressure Gaseous Argon TPC surrounded by an electromagnetic calorimeter and magnet

- Conversion probability for photons too low in TPC
 - \rightarrow tracker based π^0 reconstruction not possible
- Our interest: Can high granularity help?
 - Try to reconstruct π^0 decay vertex

Possible layout: Liquid Argon TPC followed by a High Pressure Gaseous Argon TPC surrounded by an **electromagnetic calorimeter** and magnet

<u>Challenge</u>: Typical π^0 energies ~50 to ~400MeV \rightarrow Photon energies often <50MeV Noisy detector environment \rightarrow problematic for slow detectors like TPCs

Detector Simulation

Sampling calorimeter with active material segmented in 20mm x 20mm tiles (default)

Detector Simulation

Sampling calorimeter with active material segmented in 20mm x 20mm tiles (default)

Default layer structure:

- •2mm copper absorber
- •5mm plastic scintillator
- •Gap for electronics

Detector Simulation

Sampling calorimeter with active material segmented in 20mm x 20mm tiles (default)

Default layer structure:

- •2mm copper absorber
- •5mm plastic scintillator
- Gap for electronics

Look at the scenario of incorporating (parts of) the ECal inside the TPC vessel

Inner ECal increases the chance to detect low energy photons

Goal of the Study

- 1. Proof of principle:
 - Is such a calorimeter capable of fulfilling the introduced tasks ?
- 2. Dependency on the detector configuration:
 - What are the performance driving parameters ?
 - Obtain plausible results to evaluate the impact of the detector configuration on the detectors performance

Goal of the Study

- 1. Proof of principle:
 - Is such a calorimeter capable of fulfilling the introduced tasks?
- 2. Dependency on the detector configuration:
 - What are the performance driving parameters ?
 - Obtain plausible results to evaluate the impact of the detector configuration on the detectors performance

Studied scenarios:

- Scaling of the single photon <u>energy and angular resolution</u> with
- 1. the presence of a pressure vessel
- 2. the granularity in inner and outer part of the calorimeter
- 3. the absorber material and thickness
- Precision of the vertex reconstruction of π^0 decays
- Performance of identification and energy reconstruction of neutrons

Influence of the Absorber

Granularity: 20mm, ECal inside TPC

Angular resolution

Energy resolution

Influence of the Absorber

Granularity: 20mm, ECal inside TPC

Normalized angular resolution

Conclusion: Copper yields better angular resolution, but 1mm copper is leaking very much energy

Normalized energy resolution

Overview

	Angular Resolution	Ene Res
No vessel	Default	Defa
Copper absorber	Default	Defa
Titanium vessel	\rightarrow	
Steel vessel	\rightarrow	
Lead absorber		
Higher granularity in inner calorimeter		
Higher granularity in outer calorimeter		

- Positive
- → Neutral

<u>Pitch</u>: severity of effect

<u>Default</u>: Used for the reconstruction of neutral Pions

Detect pions with 6 calorimeter segments enclosing a 3x3x3m³ volume

- Distinguish photon1 from photon2 by MC truth
- Reconstruct the directions of both photons separately

estimate of the decay vertex \rightarrow Improve with χ^2 -minimization

Pions decay in the center of the TPC volume ➡ Distance to forward calorimeter: 1.5m

Pions decay in the center of the TPC volume Distance to forward calorimeter: 1.5m

Divide cross section plane (0,Y,Z) of the TPC in 30x30cm² pixel

Simulate 5000 Pion events with momentum along (0,0,Z) in the center of each pixel

Summary and Outlook

Implemented simulation study is capable of

- determining the scaling of the performance with different configurations (Absorber, Granularity, ...)
- proving the concept of a calorimeter aided π^0 reconstruction

Reconstruction of π^0 :

- Developed a technique to reconstruct vertex
- Vertex reconstruction within 20cm to 40cm at higher energies
- Reconstruction of the invariant mass is possible with π^0 at rest

Next Steps:

- Implementation of a full detector simulation including TPC
- Optimization of the channel count (~1.000.000) to reduce the cost and develop a concrete design

Backup

Backup

Lorenz Emberger

Long Baseline Neutrino Physics

- <u>Goal</u>: Determination of the neutrino mass hierarchy
 - probability disentangle for long baselines

Effects of CP violation and neutrino mass hierarchy on the oscillation

Long Baseline Neutrino Physics

- <u>Goal</u>: Potential discovery of leptonic CP violation
 - Probability $P(\nu_{\mu} \rightarrow \nu_{e}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ CP is conserved

ic CP violation $_{\mu}
ightarrow ar{
u}_{e}$ if CP is conserved

CP and T Violation

PMNS-Matrix:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Transition probability:

$$P_{\nu_{\mu} \to \nu_{e}} \simeq -4 \sum_{k>j} \Re \left[U_{\mu k}^{*} U_{e k} U_{\mu j} U_{e j}^{*} \right] \sin^{2} \left(\frac{\Delta m_{k j}^{2} L}{4E_{\nu}} \right)$$
$$+2 \sum_{k>j} \Im \left[U_{\mu k}^{*} U_{e k} U_{\mu j} U_{e j}^{*} \right] \sin^{2} \left(\frac{\Delta m_{k j}^{2} L}{2E_{\nu}} \right)$$

Neutrino Oscillation in Matter

$$P_{\nu_{\mu} \to \nu_{e}} \approx \sin^{2}(\theta_{23}) \sin^{2}(2\theta_{13}) \frac{\sin^{2}(\Delta(1-x))}{(1-x)^{2}}$$
$$+ \alpha J \cos(\Delta \pm \delta) \frac{\sin(\Delta x) \sin(\Delta(1-x))}{x(1-x)}$$
$$+ \alpha^{2} \cos^{2}(\theta_{23}) \sin^{2}(2\theta_{12}) \frac{\sin^{2}(\Delta x)}{x^{2}}$$

$$\Delta = \Delta m_{23}^2 L/4E_{\nu}$$
$$x = \pm 2\sqrt{2}G_F N_e E_{\nu}/4E_{\nu}$$

Cones given by angular resolution

 θ

Overlap gives possible locations of true vertex

Purely geometric reconstruction → using Calorimeter information exclusively

Cones given by angular resolution

 θ

Overlap gives possible locations of true vertex

Purely geometric reconstruction → using Calorimeter information exclusively

Add kinematical information → invariant mass

- Require the optimization to be consistent with known π^0 mass
- resolution

Lorenz Emberger

Purely geometric reconstruction \rightarrow using Calorimeter information exclusively

Add kinematical information \rightarrow invariant mass

• Require the optimization to be consistent with the energy dependent angular

Pion - Minimization

 θ

Cones given by angular resolution

Overlap gives possible locations of true vertex

$$\chi^2 = \frac{(M_{pion} - M_{reco})^2}{\sigma_{mass}^2}$$

Purely geometric reconstruction → using Calorimeter information exclusively

Add kinematical information \rightarrow invariant mass

, with
$$M_{reco} = \sqrt{2E_{ph1}E_{ph2}(1-\cos\theta)}$$

Pion - Minimization

$$\chi^{2} = \frac{(M_{pion} - M_{reco})^{2}}{\sigma_{mass}^{2}} + a \left[\frac{\phi_{1}^{2}}{\sigma_{photon1}^{2}} + \frac{\phi_{1}^{2}}{\sigma_{photon1}^{2}}\right]$$

Highly granular ECal in DUNE

- Divide cross section plane (0,Y,Z) of the TPC in 30x30cm² pixel
- Simulate 5000 Pion events with momentum along (0,0,Z) in the center of each pixel

to true vertex[mm] Distance

• Divide cross section plane (0,Y,Z) of the TPC in 30x30cm² pixel

- Divide cross section plane (0,Y,Z) of the TPC in 30x30cm² pixel
- Simulate 5000 Pion events with momentum along (0,0,Z) in the center of each pixel

to true vertex[mm] Distance

- Divide cross section plane (0,Y,Z) of the TPC in 30x30cm² pixel
- Simulate 5000 Pion events with momentum along (0,0,Z) in the center of each pixel

The detection and energy measurement is vital for:

- The determination of the energy spectrum of the neutrino beam
- The reduction of systematic errors in the energy spectrum
- The determination of cross-sections of neutrinonucleus interactions

- Neutrons are generated in neutrino interactions with the argon nucleons

The detection and energy measurement is vital for:

- The determination of the energy spectrum of the neutrino beam
- The reduction of systematic errors in the energy spectrum
- The determination of cross-sections of neutrinonucleus interactions

<u>Challenge:</u> Neutron energies of a few 100MeV

 \rightarrow Study detection efficiency and hadronic energy resolution in this region

- Neutrons are generated in neutrino interactions with the argon nucleons

The detection and energy measurement is vital for:

- The determination of the energy spectrum of the neutrino beam
- The reduction of systematic errors in the energy spectrum
- The determination of cross-sections of neutrinonucleus interactions

<u>Challenge:</u> Neutron energies of a few 100MeV

 \rightarrow Study detection efficiency and hadronic energy resolution in this region

Neutrons are generated in neutrino interactions with the argon nucleons

The detection and energy measurement is vital for:

- The determination of the energy spectrum of the neutrino beam
- The reduction of systematic errors in the energy spectrum
- The determination of cross-sections of neutrinonucleus interactions

<u>Challenge:</u> Neutron energies of a few 100MeV

 \rightarrow Study detection efficiency and hadronic energy resolution in this region

- Neutrons are generated in neutrino interactions with the argon nucleons

Neutron Detection Efficiency

Apply requirements on the recorded event to estimate detection efficiency

• 20000 neutron events per energy

Requirement: • One channel with E_{Dep} > 0.5MeV

Neutron Detection Efficiency

• 20000 neutron events per energy

Apply requirements on the recorded event to estimate detection efficiency

Visible Neutron Energy

• Obtain ratio of mean visible energy to true energy

Visible Neutron Energy

• Obtain ratio of mean visible energy to true energy

- Ratio of mean visible energy to true energy is about 0.2 for energies above 100MeV
- Distributions are not gaussian \rightarrow use mean and RMS of binned distribution to obtain energy resolution

Neutron Energy Resolution

• Neutron energy resolution at about 58% over the full simulated energy range

