Upgrading ATLAS muon tube readout for high rates Tests at CERN's secondary beam facility

Catriona Bruce

IMPRS Young Scientist Workshop

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Ringberg, 8.9.2018

Recap: ATLAS muon technologies

Recap: ATLAS muon technologies

e.g. a 1 TeV barrel muon, 0.5 mm sagitta, $\sigma \le 50 \ \mu m$

Alignment error ~ 30 μm
Intrinsic chamber resolution ~ 40-80 μm

sub-100um precision in 30 mm tube?

How does this work?

Autocalibration

- 1. Know the shape of a muon trajectory
- 2. Pick characteristic point in avalanche development \rightarrow rising edge inflection
- 3. Use the sequence of avalanche inflections to approximate trajectory
- 4. Iterate!

Anatomy of a drift tube current signal

$$I(t) = -\frac{q}{D}v_r(t)$$

- Differential signal: current pulse due to multiple avalanches
- Convert current pulse to voltage pulse with same shape
- Store rising edge time digitally on buffer

The MDT readout chain

Time stamps stored in a buffer

L1 trigger notifies the chamber if it wants the data

08.09.18

Improving rate capability for HL-LHC

Smaller tubes

- Reduce max drift time (25%)
- Reduce chamber cross section (50%)
- \rightarrow chamber occupancy (.125%)
- \rightarrow shorter dead time (space charge effects)

New readout electronics

08.09.18

Meanwhile: improving coverage

Meanwhile: improving coverage

PART II: CERN secondary beam area

662 keV gamma 14 TBq 137-Cs

G

CERN secondary beam area

Muon spills up to 100 GeV from SPS protons

- T2 target and Wobbling station -> periodic spills into H2, H4
- · Collimators to control particle selection

CM5

LHCb

~1% of secondary particle flux makes it through GIF++ scintillator (0.01m2), another

~1% in a 1m2 cone around beam axis

GIF++ sees 10^4 muons/spill and 2 spills/minute

Muon spills up to 100 GeV from SPS protons

Quickly accumulate HL-LHC doses 14 TBq 137-Cs, 662 keV γ

Gamma Irradiation Facility

08.09.18

Efficiency dependence on hit rate

- Remove data point from autocalibration
- See if data point still lies on track

Gamma Irradiation Facility

Stability and quality of front-end signal processing

Parametric performance e.g. applied voltage

Variability with ambient conditions

Spatial or temporal resolution

Aging

Anything that needs high statistics

Gamma Irradiation Facility

Aging problem highly material dependent

MDTs with CH4: exponential decrease in lifetime with voltage

Figure 5. Dependence of lifetime of ATLAS muon drift tubes irradiated in At/CH_/N_/CO2 (94:3:2:1) as a function of high voltage for (different particle fluxes [56].

No known mechanism for aging of Ar/CO2 chambers

ANODE SURFACE

08.09.18

Test of new ASD chip for MDT front end

Stripped-down track reconstruction and trigger

MDT test beam full chamber electronics and data flow

Track-fit residuals (left), drift time spectra (right)

Conclusion and outlook

MDT precision chambers

- extract position from the spreads of avalanche signals across the MS

Improvements for HL-LHC

- rate and coverage

CERN secondary beam facilities - Gamma irradiation

- μ and π beams
- Shared resources between many groups

2 test periods so far this year - proper analysis still underway

Quickly accumulate HL-LHC doses 14 TBq 137-Cs, 662 keV γ

56% expected to be degraded Compton scattered photons

Muon trigger for HL-LHC

- Eventually, will need to replace current detectors...
 - Lifetime 100kHz/cm² for 10 years
 - Rates in HL-LHC will increase sevenfold
- In the meantime, we can extend their lifespan...
 - Increase number of layers, each detector has less work
 - Fill the blind spots
 - New coincidence requirements

2019/20:

.. And improve performance.

16 new sMDT-RPC chambers in BI

We may then require only 2/4 layer coincidence from BM chambers

The MDT readout chain

Cavern buffer \rightarrow 'fast' reconstruction \rightarrow high-level track reconstructions \rightarrow event selection

•Temperature:

lowered drift velocity as temperature increases. For Tmax, ~1.5 ns K-1.

•Gas pressure (density): ionisation charge density and the gas amplification.

•Humidity:

increases leakage currents in the high-voltage distribution.

Dark current was also monitored: ~10-50 nA

t0 calibration

Calibrating the scintillation counter times with respect to the minimum drift times (t0) of the drift tubes, two time jitter contributions are corrected for at the same time: propagation timevariations both in the scintillation counters and along the drift tubes. First, the drift tubet0-valuesare determined as described in section 4.3.1 ignoring the trigger time offset (ttrigger0=0). The drift

Dark current was also monitored: ~10-50 nA