Non-geometric spacetimes in string theory

David Osten

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

IMPRS Young Scientist Workshop, Schloss Ringberg, 05.09. - 08.09.2018

- general relativity:
 - space time = smooth curved background (manifold) described by metric $G_{\mu\nu}$
 - classical dynamics described by Einstein equations

- general relativity:
 - space time = smooth curved background (manifold) described by metric $G_{\mu\nu}$
 - classical dynamics described by Einstein equations
- quantum theory
 - naive perturbative quantisation fails
 - conceptual problems: superposition of spacetimes, ...

- general relativity:
 - space time = smooth curved background (manifold) described by metric $G_{\mu\nu}$
 - classical dynamics described by Einstein equations
- quantum theory
 - naive perturbative quantisation fails
 - conceptual problems: superposition of spacetimes, ...
- 'quantisation' of spacetime?
 - coarse grained space
 - spin foams (loop quantum gravity)
 - string theory?

- general relativity:
 - space time = smooth curved background (manifold) described by metric $G_{\mu\nu}$
 - classical dynamics described by Einstein equations
- quantum theory
 - naive perturbative quantisation fails
 - conceptual problems: superposition of spacetimes, ...
- 'quantisation' of spacetime?
 - coarse grained space
 - spin foams (loop quantum gravity)
 - string theory?

2 non-commutative and non-associative spacetimes

3 strings in (bosonic) backgrounds

4 from geometric to non-geometric fluxes

• non-commutative spacetime \rightarrow *physical* minimal areas

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{\nu} \ge \theta^{\mu\nu}$$

• non-commutative spacetime \rightarrow *physical* minimal areas

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{\nu} \ge \theta^{\mu\nu}$$

(similar) example: charged point particle in a magnetic field \vec{B} $[\hat{\pi}_i, \hat{\pi}_i] = -iq\epsilon_{ijk}B_k$ with kinematical momenta $\vec{\pi} = m\dot{\vec{x}}$

• non-commutative spacetime \rightarrow *physical* minimal areas

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{\nu} \ge \theta^{\mu\nu}$$

(similar) example: charged point particle in a magnetic field \vec{B} $[\hat{\pi}_i, \hat{\pi}_j] = -iq\epsilon_{ijk}B_k$ with kinematical momenta $\vec{\pi} = m\dot{\vec{x}}$

- non-associative spacetime: \rightarrow physical minimal volumes
 - Jacobi identity (infinitesimal version of *associativity* blackboard):

$$\mathsf{Jac}(\hat{A}, \hat{B}, \hat{C}) = [\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$$

• non-commutative spacetime \rightarrow *physical* minimal areas

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{\nu} \ge \theta^{\mu\nu}$$

(similar) example: charged point particle in a magnetic field \vec{B} $[\hat{\pi}_i, \hat{\pi}_j] = -iq\epsilon_{ijk}B_k$ with kinematical momenta $\vec{\pi} = m\dot{\vec{x}}$

- non-associative spacetime: \rightarrow *physical* minimal volumes
 - Jacobi identity (infinitesimal version of *associativity* blackboard): $Jac(\hat{A}, \hat{B}, \hat{C}) = [\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$
 - violation of Jacobi identity \rightarrow higher uncertainty relation, e.g. $Jac(\hat{x}^1, \hat{x}^2, \hat{x}^3) = iR^{123} \neq 0 \quad \rightarrow \Delta x^1 \cdot \Delta x^2 \cdot \Delta x^3 \geq R^{123}$

• non-commutative spacetime \rightarrow *physical* minimal areas

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{\nu} \ge \theta^{\mu\nu}$$

(similar) example: charged point particle in a magnetic field \vec{B} $[\hat{\pi}_i, \hat{\pi}_j] = -iq\epsilon_{ijk}B_k$ with kinematical momenta $\vec{\pi} = m\dot{\vec{x}}$

- non-associative spacetime: → physical minimal volumes
 - Jacobi identity (infinitesimal version of *associativity* blackboard): $Jac(\hat{A}, \hat{B}, \hat{C}) = [\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$
 - violation of Jacobi identity \rightarrow higher uncertainty relation, e.g. $Jac(\hat{x}^1, \hat{x}^2, \hat{x}^3) = iR^{123} \neq 0 \quad \rightarrow \Delta x^1 \cdot \Delta x^2 \cdot \Delta x^3 \ge R^{123}$

How do these emerge in string theory?

strings in (bosonic) backgrounds

- single string picture:
 - string moving in/coupling to a background spacetime generalisation of point particle moving in curved space
 - different background fields, among others: metric G_{μν}, Kalb-Ramond field B_{μν}: (higher) gauge field

strings in (bosonic) backgrounds

- single string picture:
 - string moving in/coupling to a background spacetime generalisation of point particle moving in curved space
 - different background fields, among others: metric G_{μν}, Kalb-Ramond field B_{μν}: (higher) gauge field
- modifications in relation string \leftrightarrow (target) spacetime
 - · compact extra dimensions: winding modes of string
 - finite string length
 - not necessarily ordinary manifolds: interplay between metric *G* and other fields
 - dualities, e.g. *T*-duality $R \leftrightarrow \frac{1}{R}$

• open strings in Minkowski space $G_{\mu\nu} = \eta_{\mu\nu}$, B = 0, ending on a stack of *D*-branes: describe U(N) gauge theory

- open strings in Minkowski space $G_{\mu\nu} = \eta_{\mu\nu}$, B = 0, ending on a stack of *D*-branes: describe U(N) gauge theory
- open strings with *B*-field

[Seiberg, Witten 99]

$$g^{\mu
u} + heta^{\mu
u} = \left(rac{1}{G+B}
ight)^{\mu
u}$$

effective metric g^{-1} and non-commutativity $heta^{\mu
u}$

- open strings in Minkowski space $G_{\mu\nu} = \eta_{\mu\nu}$, B = 0, ending on a stack of *D*-branes: describe U(N) gauge theory
- open strings with *B*-field [Seiberg, Witten 99]

$$g^{\mu\nu} + \theta^{\mu\nu} = \left(\frac{1}{G+B}\right)^{\mu\nu}$$

effective metric g^{-1} and non-commutativity $heta^{\mu
u}$

 → 'non-commutative Yang-Mills theory': U(N) gauge theory in non-commutative space (on D-brane)

$$[\hat{x}^{\mu},\hat{x}^{\nu}]=i\theta^{\mu\nu}$$

- open strings in Minkowski space $G_{\mu\nu} = \eta_{\mu\nu}$, B = 0, ending on a stack of *D*-branes: describe U(N) gauge theory
- open strings with *B*-field [Seiberg, Witten 99]

$$g^{\mu\nu} + \theta^{\mu\nu} = \left(\frac{1}{G+B}\right)^{\mu\nu}$$

effective metric g^{-1} and non-commutativity $heta^{\mu
u}$

 → 'non-commutative Yang-Mills theory': U(N) gauge theory in non-commutative space (on D-brane)

$$[\hat{x}^{\mu},\hat{x}^{\nu}]=i\theta^{\mu\nu}$$

[Shelton, Taylor, Wecht 05]

chain of *T*-dualities:

$$\mathbf{H}_{abc} \xrightarrow{T_1} \mathbf{f}^c_{ab} \xrightarrow{T_2} \mathbf{Q}_c^{ab} \xrightarrow{T_3} \mathbf{R}^{abc}$$

 start with H-flux on flat 3-torus T³: H₁₂₃ = ∂_{[1}B_{23]} = h ℝ³ with xⁱ ~ xⁱ + 1 + gauge field → geometric

[Shelton, Taylor, Wecht 05]

chain of *T*-dualities:

$$\mathbf{H}_{abc} \xrightarrow{T_1} \mathbf{f}^c{}_{ab} \xrightarrow{T_2} \mathbf{Q}_c{}^{ab} \xrightarrow{T_3} \mathbf{R}^{abc}$$

- start with H-flux on flat 3-torus T³: H₁₂₃ = ∂_{[1}B_{23]} = h ℝ³ with xⁱ ~ xⁱ + 1 + gauge field → geometric
- *T*-duality along *x*¹:
 - 'twisted torus': $(x^1, x^2, x^3) \sim (x^1 hx^2, x^2, x^3 + 1)$
 - similar to a Lie group: vector fields e_i^a

 $\partial_{[i}e^{c}_{j]} + \mathbf{f}^{c}_{\ ab}e^{a}_{i}e^{b}_{j} = 0 \ o \ \text{geometric } \mathbf{f}$ -flux, here $\mathbf{f}^{3}_{12} = h$

$$\mathbf{H}_{abc} \xrightarrow{T_1} \mathbf{f}^c{}_{ab} \xrightarrow{T_2} \mathbf{Q}_c{}^{ab} \xrightarrow{T_3} \mathbf{R}^{abc}$$

T-duality along x²:
'*T*² fibration' over S¹ (x³): not well defined for x³ → x³ + 1

$$\mathbf{H}_{abc} \xrightarrow{T_1} \mathbf{f}^c{}_{ab} \xrightarrow{T_2} \mathbf{Q}_c{}^{ab} \xrightarrow{T_3} \mathbf{R}^{abc}$$

- *T*-duality along x^2 :
 - ' T^2 fibration' over S^1 (x^3): not well defined for $x^3 \rightarrow x^3 + 1$
 - non-geometric gauge transformation of θ at $x^3 \sim x^3 + 1$,

$$\mathbf{H}_{abc} \xrightarrow{T_1} \mathbf{f}^c{}_{ab} \xrightarrow{T_2} \mathbf{Q}_c{}^{ab} \xrightarrow{T_3} \mathbf{R}^{abc}$$

T-duality along x²:
 '*T*² fibration' over S¹ (x³): not well defined for x³ → x³ + 1
 non-geometric gauge transformation of θ at x³ ~ x³ + 1, → 'globally non-geometric'

$$\mathbf{H}_{abc} \xrightarrow{T_1} \mathbf{f}^c{}_{ab} \xrightarrow{T_2} \mathbf{Q}_c{}^{ab} \xrightarrow{T_3} \mathbf{R}^{abc}$$

- *T*-duality along *x*²:
 - ' T^2 fibration' over $S^1(x^3)$: not well defined for $x^3 \rightarrow x^3 + 1$
 - non-geometric gauge transformation of θ at $x^3 \sim x^3 + 1$, \rightarrow 'globally non-geometric'
 - for closed strings in **Q**-flux: $[\hat{x}^a, \hat{x}^b] \sim \mathbf{Q}_c{}^{ab}w^c$
- (formal) *T*-duality along x^3 : $\theta^{12} = h\tilde{x}^3$
 - \tilde{x}^3 'winding' coordinate
 - no description in terms of standard coordinates
 - ightarrow 'locally non-geometric'

 ${f R}^{abc}= ilde{\partial}^{[c} heta^{ab]}$ \longrightarrow non-geometric ${f R}$ -flux , here ${f R}^{123}=h$

• for closed strings in **R**-flux: $Jac(\hat{x}^a, \hat{x}^b, \hat{x}^c) \sim \mathbf{R}^{abc}$

summary

 non-commutative and non-associative spacetimes contain *physical* minimal areas and volumes → natural regularisation?

summary

- non-commutative and non-associative spacetimes contain *physical* minimal areas and volumes → natural regularisation?
- in string theory:
 - open strings: in *B*-field backgrounds
 → non-commutative Yang-Mills theories
 - closed strings: non-geometric **Q** and **R**-flux describe non-commutative resp. non-associative spacetimes.

summary

- non-commutative and non-associative spacetimes contain *physical* minimal areas and volumes → natural regularisation?
- in string theory:
 - open strings: in *B*-field backgrounds
 → non-commutative Yang-Mills theories
 - closed strings: non-geometric **Q** and **R**-flux describe non-commutative resp. non-associative spacetimes.
- string dualities: different backgrounds, same physics new view on spacetime and its mathematical description