Non-geometric spacetimes in string theory

David Osten

IMPRS Young Scientist Workshop,
Schloss Ringberg, 05.09.-08.09.2018

motivation

- general relativity:
- space time $=$ smooth curved background (manifold) described by metric $G_{\mu v}$
- classical dynamics described by Einstein equations

motivation

- general relativity:
- space time $=$ smooth curved background (manifold) described by metric $G_{\mu v}$
- classical dynamics described by Einstein equations
- quantum theory
- naive perturbative quantisation fails
- conceptual problems: superposition of spacetimes, ...

motivation

- general relativity:
- space time $=$ smooth curved background (manifold) described by metric $G_{\mu v}$
- classical dynamics described by Einstein equations
- quantum theory
- naive perturbative quantisation fails
- conceptual problems: superposition of spacetimes, ...
- 'quantisation' of spacetime?
- coarse grained space
- spin foams (loop quantum gravity)
- string theory?

motivation

- general relativity:
- space time $=$ smooth curved background (manifold) described by metric $G_{\mu v}$
- classical dynamics described by Einstein equations
- quantum theory
- naive perturbative quantisation fails
- conceptual problems: superposition of spacetimes, ...
- 'quantisation' of spacetime?
- coarse grained space
- spin foams (loop quantum gravity)
- string theory?

overview

(1) motivation
(2) non-commutative and non-associative spacetimes
(3) strings in (bosonic) backgrounds
(4) from geometric to non-geometric fluxes

uncertainty relations of spacetime

- non-commutative spacetime \rightarrow physical minimal areas

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{v} \geq \theta^{\mu v}
$$

uncertainty relations of spacetime

- non-commutative spacetime \rightarrow physical minimal areas

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{v} \geq \theta^{\mu v}
$$

(similar) example: charged point particle in a magnetic field \vec{B}

$$
\left[\hat{\pi}_{i}, \hat{\pi}_{j}\right]=-i q \epsilon_{i j k} B_{k} \quad \text { with kinematical momenta } \vec{\pi}=m \dot{\vec{x}}
$$

uncertainty relations of spacetime

- non-commutative spacetime \rightarrow physical minimal areas

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{v} \geq \theta^{\mu v}
$$

(similar) example: charged point particle in a magnetic field \vec{B}

$$
\left[\hat{\pi}_{i}, \hat{\pi}_{j}\right]=-i q \epsilon_{i j k} B_{k} \quad \text { with kinematical momenta } \vec{\pi}=m \dot{\vec{x}}
$$

- non-associative spacetime: \rightarrow physical minimal volumes
- Jacobi identity (infinitesimal version of associativity - blackboard):

$$
\operatorname{Jac}(\hat{A}, \hat{B}, \hat{C})=[\hat{A},[\hat{B}, \hat{C}]]+[\hat{B},[\hat{C}, \hat{A}]]+[\hat{C},[\hat{A}, \hat{B}]]=0
$$

uncertainty relations of spacetime

- non-commutative spacetime \rightarrow physical minimal areas

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{v} \geq \theta^{\mu v}
$$

(similar) example: charged point particle in a magnetic field \vec{B}

$$
\left[\hat{\pi}_{i}, \hat{\pi}_{j}\right]=-i q \epsilon_{i j k} B_{k} \quad \text { with kinematical momenta } \vec{\pi}=m \dot{\vec{x}}
$$

- non-associative spacetime: \rightarrow physical minimal volumes
- Jacobi identity (infinitesimal version of associativity - blackboard):

$$
\operatorname{Jac}(\hat{A}, \hat{B}, \hat{C})=[\hat{A},[\hat{B}, \hat{C}]]+[\hat{B},[\hat{C}, \hat{A}]]+[\hat{C},[\hat{A}, \hat{B}]]=0
$$

- violation of Jacobi identity \rightarrow higher uncertainty relation, e.g.

$$
\operatorname{Jac}\left(\hat{x}^{1}, \hat{x}^{2}, \hat{x}^{3}\right)=i R^{123} \neq 0 \quad \rightarrow \Delta x^{1} \cdot \Delta x^{2} \cdot \Delta x^{3} \geq R^{123}
$$

uncertainty relations of spacetime

- non-commutative spacetime \rightarrow physical minimal areas

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v} \quad \Rightarrow \quad \Delta x^{\mu} \cdot \Delta x^{v} \geq \theta^{\mu v}
$$

(similar) example: charged point particle in a magnetic field \vec{B}

$$
\left[\hat{\pi}_{i}, \hat{\pi}_{j}\right]=-i q \epsilon_{i j k} B_{k} \quad \text { with kinematical momenta } \vec{\pi}=m \dot{\vec{x}}
$$

- non-associative spacetime: \rightarrow physical minimal volumes
- Jacobi identity (infinitesimal version of associativity - blackboard):

$$
\operatorname{Jac}(\hat{A}, \hat{B}, \hat{C})=[\hat{A},[\hat{B}, \hat{C}]]+[\hat{B},[\hat{C}, \hat{A}]]+[\hat{C},[\hat{A}, \hat{B}]]=0
$$

- violation of Jacobi identity \rightarrow higher uncertainty relation, e.g.

$$
\operatorname{Jac}\left(\hat{x}^{1}, \hat{x}^{2}, \hat{x}^{3}\right)=i R^{123} \neq 0 \quad \rightarrow \Delta x^{1} \cdot \Delta x^{2} \cdot \Delta x^{3} \geq R^{123}
$$

How do these emerge in string theory?

strings in (bosonic) backgrounds

- single string picture:
- string moving in/coupling to a background spacetime generalisation of point particle moving in curved space
- different background fields, among others: metric $G_{\mu \nu}$, Kalb-Ramond field $B_{\mu \nu}$: (higher) gauge field

strings in (bosonic) backgrounds

- single string picture:
- string moving in/coupling to a background spacetime generalisation of point particle moving in curved space
- different background fields, among others: metric $G_{\mu v}$, Kalb-Ramond field $B_{\mu v}$: (higher) gauge field
- modifications in relation string \leftrightarrow (target) spacetime
- compact extra dimensions: winding modes of string
- finite string length
- not necessarily ordinary manifolds:
interplay between metric G and other fields
- dualities, e.g. T-duality $-R \leftrightarrow \frac{1}{R}$

example 1: open strings and B-fields

- open strings in Minkowski space $G_{\mu \nu}=\eta_{\mu v}, B=0$, ending on a stack of D-branes: describe $U(\mathrm{~N})$ gauge theory

example 1: open strings and B-fields

- open strings in Minkowski space $G_{\mu v}=\eta_{\mu v}, B=0$, ending on a stack of D-branes: describe $U(\mathrm{~N})$ gauge theory
- open strings with B-field [Seiberg, Witten 99]

$$
g^{\mu v}+\theta^{\mu v}=\left(\frac{1}{G+B}\right)^{\mu v}
$$

effective metric g^{-1} and non-commutativity $\theta^{\mu v}$

example 1: open strings and B-fields

- open strings in Minkowski space $G_{\mu v}=\eta_{\mu v}, B=0$, ending on a stack of D-branes: describe $U(\mathrm{~N})$ gauge theory
- open strings with B-field
[Seiberg, Witten 99]

$$
g^{\mu v}+\theta^{\mu v}=\left(\frac{1}{G+B}\right)^{\mu v}
$$

effective metric g^{-1} and non-commutativity $\theta^{\mu v}$

- \rightarrow 'non-commutative Yang-Mills theory':
$U(\mathrm{~N})$ gauge theory in non-commutative space (on D-brane)

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v}
$$

example 1: open strings and B-fields

- open strings in Minkowski space $G_{\mu v}=\eta_{\mu v}, B=0$, ending on a stack of D-branes: describe $U(\mathrm{~N})$ gauge theory
- open strings with B-field
[Seiberg, Witten 99]

$$
g^{\mu v}+\theta^{\mu v}=\left(\frac{1}{G+B}\right)^{\mu v}
$$

effective metric g^{-1} and non-commutativity $\theta^{\mu v}$

- \rightarrow 'non-commutative Yang-Mills theory':
$U(\mathrm{~N})$ gauge theory in non-commutative space (on D-brane)

$$
\left[\hat{x}^{\mu}, \hat{x}^{v}\right]=i \theta^{\mu v}
$$

example 2: from geometric to non-geometric fluxes I

[Shelton, Taylor, Wecht 05]
chain of T-dualities:

$$
\mathbf{H}_{a b c} \quad \xrightarrow{T_{1}} \quad \mathbf{f}_{a b}^{c} \quad \xrightarrow{T_{2}} \quad \mathbf{Q}_{c}^{a b} \xrightarrow{T_{3}} \quad \mathbf{R}^{a b c}
$$

- start with \mathbf{H}-flux on flat 3-torus $T^{3}: \mathbf{H}_{123}=\partial_{[1} B_{23]}=h \mathbb{R}^{3}$ with $x^{i} \sim x^{i}+1+$ gauge field \rightarrow geometric

example 2: from geometric to non-geometric fluxes I

[Shelton, Taylor, Wecht 05]
chain of T-dualities:

- start with \mathbf{H}-flux on flat 3-torus $T^{3}: \mathbf{H}_{123}=\partial_{[1} B_{23]}=h \mathbb{R}^{3}$ with $x^{i} \sim x^{i}+1+$ gauge field \rightarrow geometric
- T-duality along x^{1} :
- 'twisted torus': $\left(x^{1}, x^{2}, x^{3}\right) \sim\left(x^{1}-h x^{2}, x^{2}, x^{3}+1\right)$
- similar to a Lie group: vector fields e_{i}^{a}

$$
\partial_{[i} e_{j]}^{c}+\mathbf{f}^{c}{ }_{a b} e_{i}^{a} e_{j}^{b}=0 \rightarrow \text { geometric } \mathbf{f} \text {-flux, here } \mathbf{f}^{3}{ }_{12}=h
$$

example 2: from geometric to non-geometric fluxes II

$$
\mathbf{H}_{a b c} \quad \xrightarrow{T_{1}} \quad \mathbf{f}_{a b}^{c} \quad \xrightarrow{T_{2}} \quad \mathbf{Q}_{c}^{a b} \xrightarrow{T_{3}} \quad \mathbf{R}^{a b c}
$$

- T-duality along x^{2} :
- ' T^{2} fibration' over $S^{1}\left(x^{3}\right)$: not well defined for $x^{3} \rightarrow x^{3}+1$

example 2: from geometric to non-geometric fluxes II

$$
\mathbf{H}_{a b c} \xrightarrow{T_{1}} \quad \mathbf{f}_{a b}^{c} \xrightarrow{T_{2}} \quad \mathbf{Q}_{c}^{a b} \xrightarrow{T_{3}} \quad \mathbf{R}^{a b c}
$$

- T-duality along x^{2} :
- ' T^{2} fibration' over $S^{1}\left(x^{3}\right)$: not well defined for $x^{3} \rightarrow x^{3}+1$
- non-geometric gauge transformation of θ at $x^{3} \sim x^{3}+1$,

example 2: from geometric to non-geometric fluxes II

$$
\mathbf{H}_{a b c} \xrightarrow{T_{1}} \quad \mathbf{f}_{a b}^{c} \xrightarrow{T_{2}} \quad \mathbf{Q}_{c}^{a b} \xrightarrow{T_{3}} \quad \mathbf{R}^{a b c}
$$

- T-duality along x^{2} :
- ' T^{2} fibration' over $S^{1}\left(x^{3}\right)$: not well defined for $x^{3} \rightarrow x^{3}+1$
- non-geometric gauge transformation of θ at $x^{3} \sim x^{3}+1$,
\rightarrow 'globally non-geometric'

example 2: from geometric to non-geometric fluxes II

$\mathbf{H}_{a b c} \quad \xrightarrow{T_{1}} \quad \mathbf{f}^{c}{ }_{a b} \quad \xrightarrow{T_{2}} \quad \mathbf{Q}_{c}{ }^{a b} \quad \xrightarrow{T_{3}} \quad \mathbf{R}^{a b c}$

- T-duality along x^{2} :
- ' T^{2} fibration' over $S^{1}\left(x^{3}\right)$: not well defined for $x^{3} \rightarrow x^{3}+1$
- non-geometric gauge transformation of θ at $x^{3} \sim x^{3}+1$,
\rightarrow 'globally non-geometric'
- for closed strings in \mathbf{Q}-flux: $\left[\hat{x}^{a}, \hat{x}^{b}\right] \sim \mathbf{Q}_{c}{ }^{a b} w^{c}$
- (formal) T-duality along $x^{3}: \theta^{12}=h \tilde{x}^{3}$
- \tilde{x}^{3} 'winding' coordinate
- no description in terms of standard coordinates
$\rightarrow \quad$ 'locally non-geometric'

$$
\mathbf{R}^{a b c}=\tilde{\partial}\left[c \theta^{a b]} \longrightarrow \text { non-geometric } \mathbf{R} \text {-flux, here } \mathbf{R}^{123}=h\right.
$$

- for closed strings in R-flux: $\operatorname{Jac}\left(\hat{x}^{a}, \hat{x}^{b}, \hat{x}^{c}\right) \sim \mathbf{R}^{a b c}$

summary

- non-commutative and non-associative spacetimes contain physical minimal areas and volumes
\rightarrow natural regularisation?

summary

- non-commutative and non-associative spacetimes contain physical minimal areas and volumes \rightarrow natural regularisation?
- in string theory:
- open strings: in B-field backgrounds \rightarrow non-commutative Yang-Mills theories
- closed strings: non-geometric \mathbf{Q} - and \mathbf{R}-flux describe non-commutative resp. non-associative spacetimes.

summary

- non-commutative and non-associative spacetimes contain physical minimal areas and volumes \rightarrow natural regularisation?
- in string theory:
- open strings: in B-field backgrounds \rightarrow non-commutative Yang-Mills theories
- closed strings: non-geometric Q- and R-flux describe non-commutative resp. non-associative spacetimes.
- string dualities: different backgrounds, same physics new view on spacetime and its mathematical description

