

Search for Supersymmetry in Multileptonic Final States with Collimated τ Pairs with the ATLAS Detector

Marian Rendel

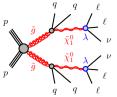
Max Planck Institute for Physics (Werner-Heisenberg-Institut)

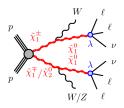
Thursday 6th September, 2018

R-parity violating Supersymmetry

In some SUSY models R-parity is not conserved

$$W_{\Delta L=1} = \frac{1}{2} \lambda^{ijk} L_i L_j \bar{E}_k \qquad \tilde{\chi}_1^0 \underbrace{\tilde{e}_R^{+*}}_{k_1} \underbrace{\tilde{e}_R^{+*}}_{e^-} e^{-i\mu^+}$$


Final states with high lepton multiplicity


ightarrow Search for the four lepton final state

Advantages: low Standard Model background contribution

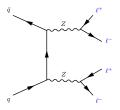
 $\begin{array}{c|c} \text{Two scenarios with } \lambda^{12k} \text{ and } \lambda^{i33} \text{ coupling:} \\ \hline & k/i=1 & k/i=2 \\ \hline \lambda^{12k} & ee\nu_{\mu} \, / \, e\mu\nu_{e} & e\mu\nu_{\mu} \, / \, \mu\mu\nu_{e} \\ \lambda^{i33} & e\tau\nu_{\tau} \, / \, \tau\tau\nu_{e} & \mu\tau\nu_{\tau} \, / \, \tau\tau\nu_{\mu} \end{array}$

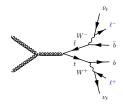
Considered processes:

	Electron	Muon	Tau	Jet
pT	$> 7 \mathrm{GeV}$	$> 5 \mathrm{GeV}$	> 20 GeV	> 20 GeV
$ \eta $	< 2.47	< 2.7	< 2.47	< 2.8

Leptons have to be isolated from hadronic activity

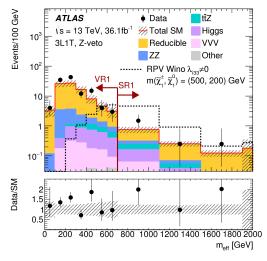
Reject events with: $|m_{\ell^+\ell^-} - m_Z| < 10 \text{ GeV}$


Discriminating variable:


$m_{\mathrm{eff}} = \sum_{\ell=\mathrm{e},\mu, au} p_{\mathrm{T}}(\ell) + \sum_{p_{\mathrm{T}}(j) > 40 \text{ GeV}} p_{\mathrm{T}}(j) + E_{\mathrm{T}}^{\mathrm{miss}}$					
SR	N_ℓ	$N_{ au}$	m _{eff}		
SR0A		= 0	> 600 GeV		
SR0B	≥ 4	= 0	> 1100 GeV		
SR1	= 3	≥ 1			
SR2	=2	≥ 2	$> 650 { m GeV}$		

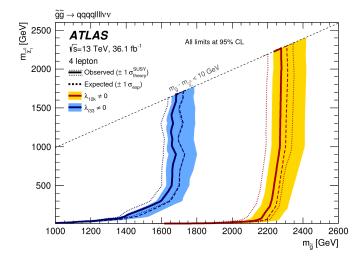
Two types of background:

- Irreducible background:
 - -- Processes with four or more leptons in the final state
 - -- e.g. ZZ, $t\bar{t}Z$, VVZ (V = Z, W)
 - -- Estimated from Monte Carlo simulation
- Reducible background:
 - -- Processes with at least one fake lepton
 - -- Estimated with data-driven fake-factor method
 - -- e.g. tt, Z+jets



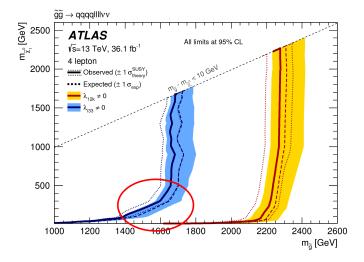
$m_{\rm eff}$ distribution

Analysis based on data taken in 2015-2016 (36.1 fb $^{-1}$)


No significant excess of data observed

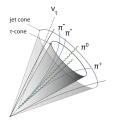
arXiv:1804.03602

Results

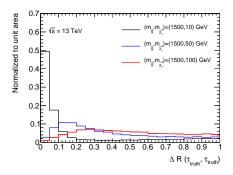


sensitivity drops for low LSP masses in case of LSP decays into τ s

Results

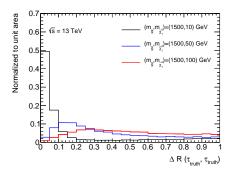


sensitivity drops for low LSP masses in case of LSP decays into τ s



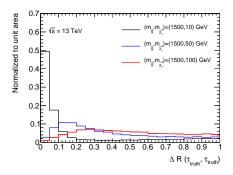
- Group calorimeter signals from hadrons into a cone (jet). Cone size: $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$
- Taus are seeded using jets with R = 0.4.
- Two regions core- and isolation-cone
- Tracks within a cone of < 0.2 are associated to the tau candidate
- Multivariate-based rejection of fake (quark- and gluon-initiated jets, electrons)

ΔR Distribution



- events enriched with collimated τ pairs for low LSP masses
- efficiency of τ reconstruction decreases rapidly for $\Delta {\it R}(\tau,\tau) < 0.4$
- ightarrow new method: di-au reconstruction

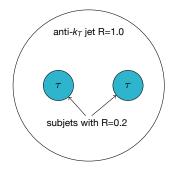
ΔR Distribution

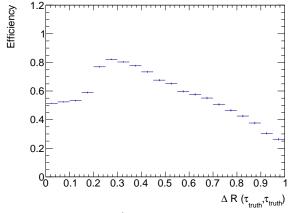


- events enriched with collimated au pairs for low LSP masses
- efficiency of τ reconstruction decreases rapidly for $\Delta {\it R}(\tau,\tau) < 0.4$

ightarrow new method: di-au reconstruction

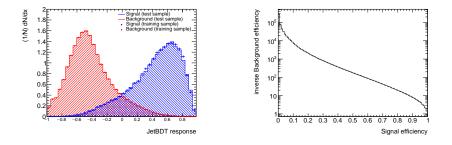
ΔR Distribution


- events enriched with collimated τ pairs for low LSP masses
- efficiency of τ reconstruction decreases rapidly for $\Delta {\it R}(\tau,\tau) < 0.4$
- ightarrow new method: di-au reconstruction


 $\mathrm{Di}\text{-}\tau$ reconstruction: reconstruct two hadronically decaying τ into a single object

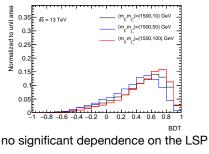
Originally developed and optimized using boosted Higgs decays

- Seeds from a jet with ${\it R}=1.0$ (0.4 for standard τ reconstruction)
- $p_{\rm T} > 50~{\rm GeV}$ (reduced from $p_{\rm T} > 300~{\rm GeV}$)
- $|\eta| < 2.5$
- At least 2 subjets (*R* = 0.2) with at least one associated track

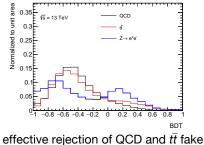

50-80% efficiency for $\Delta {\it R} < 0.4$

BDT to reject fake di- τ

BDT Training:

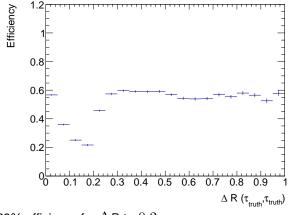

- Signal: truth-matched di-τ from SUSY gluino process
- Background: di- τ candidates from data (dominated by QCD jet production), $t\bar{t}, Z \rightarrow e^+e^-$

$\text{Di-}\tau$ identification

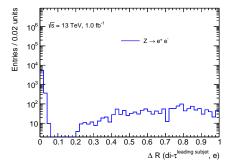


Signal

mass

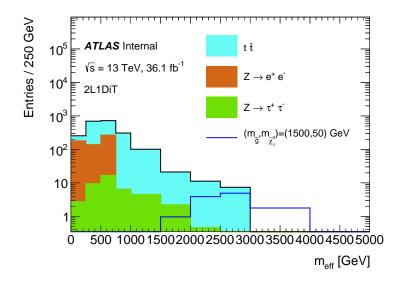

Background

effective rejection of QCD and $t\bar{t}$ fake di- τ candidates fake di- τ with high BDT caused by electrons



Signal di- τ : candidate with BDT>0.5

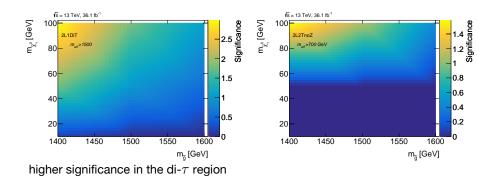
60% efficiency for $\Delta {\it R} > 0.2$



- electrons can fake a subjet
- BDT fails to reject them
- reject di-τ if the two leading subjets are matched to an electron (ΔR < 0.2)
- signal reduced by 40%
- background reduced by two orders of magnitude

Application to the Four-lepton Search

New region with $N_{\ell} = 2$, $N_{\tau} \leq 1$ and $N_{\text{Di-}\tau} \geq 1$



comparison of the expected significances between $\mbox{di-}\tau$ region and standard τ region

new region $m_{\rm eff} > 1500~{\rm GeV}$

old region (2L2T) $m_{\rm eff} > 700~{\rm GeV}$

- Final states with four lepton provides high sensitivity to RPV SUSY due to low SM background
- Low sensitivity for low LSP masses due to collimated au pairs
- New di-au reconstruction method
- Optimization for RPV SUSY processes
- Increased sensitivity to low LSP masses with di- τ reconstruction
- ightarrow Use of the new di-au for a four-lepton search with the data set of 2015-2018