Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Introduction to AdS/CFT duality

Who? From? Where?

When?

Nina Miekley

University of Würzburg

IMPRS Young Scientist Workshop, Ringberg Castle

September 5, 2018

What is so special about **gravity**? What makes it so different to QFTs?

What is so special about **gravity**? What makes it so different to QFTs?

It contains black holes.

Black holes have an entropy.

Black hole entropy

 $S_{BH} \propto Area_{Horizon}$

What does this mean for a general spacetime region A?

Black holes have an entropy.

Black hole entropy

 $S_{BH} \propto Area_{Horizon}$

What does this mean for a general spacetime region *A*?

 \rightarrow statistical physics: # of DoFs \propto S

Bekenstein bound

of DoFs \leq Area(∂A)

In contrast, in a **local** theory the # of DoFs scales as

of DoFs \propto Volume(A).

Holographic principle

For theory of quantum gravity, the degrees of freedom in a region A can be encoded on its boundary ∂A .

(Hooft, 1993; Susskind 1994)

UNI WÜ Taking it one step further Duality two theories describe same physics Both theories have same dynamics. one-to-one map between DoFs on both sides The holographic principle hints to a dual theory living on the boundary. \mathbb{I}

vastly different theory, different spacetime dimension

AdS/CFT duality

theory in Anti-de Sitter space

conformal field theory on boundary

(Maldacena, 1997)

Anti-de Sitter space

- highly symmetric solution to Einstein equations with negative cosmological constant
- constant negative curvature

metric

$$ds^2 \propto rac{1}{z^2} \left(dz^2 - dt^2 + dec{x}^2
ight)$$

UNI WÜ

Anti-de Sitter space

- highly symmetric solution to Einstein equations with negative cosmological constant
- constant negative curvature

metric

$$ds^2 \propto rac{1}{z^2} \left(dz^2 - dt^2 + d\vec{x}^2
ight)$$

Boundary of AdS

AdS space has a boundary at z = 0. The boundary coordinates are t and \vec{x} .

UNI WÜ

🚻 Symmetries

Symmetries have to match on both sides.

- Which symmetry corresponds to coordinate transformations?
- Consider a metric of the form

$$ds^2_{AdS} \propto rac{1}{z^2} \left(dz^2 + \hat{g}_{\mu
u}(z,t,\vec{x}) dx^\mu dx^
u
ight)$$

Coordinate transformation which preserves this form changes boundary metric

$$\hat{g}_{\mu\nu}(0,t,\vec{x}) \rightarrow e^{2\sigma(x)} \cdot \hat{g}_{\mu\nu}(0,t,\vec{x})$$

🚻 Symmetries

Symmetries have to match on both sides.

- Which symmetry corresponds to coordinate transformations?
- Consider a metric of the form

$$ds^2_{AdS} \propto rac{1}{z^2} \left(dz^2 + \hat{g}_{\mu
u}(z,t,\vec{x}) dx^\mu dx^
u
ight)$$

Coordinate transformation which preserves this form changes boundary metric

$$\hat{g}_{\mu\nu}(0,t,\vec{x}) \rightarrow e^{2\sigma(x)} \cdot \hat{g}_{\mu\nu}(0,t,\vec{x})$$

coordinate transformations in AdS

conformal transformation on boundary

🚻 Conformal field theory

conformal symmetry

$$g_{\mu\nu}(x) \rightarrow e^{2\sigma(x)} \cdot g_{\mu\nu}(x)$$

extension of Poincare symmetry
 preserves angles and causality

- Theory has no length-scale.
 - dimensionless coupling constants
 - vanishing beta functions

What do we have to do to obtain a 3 + 1 dimensional CFT?

 AdS_5

What do we have to do to obtain a 3 + 1 dimensional CFT?

What do we have to do to obtain a 3 + 1 dimensional CFT?

compactify $S^5 \rightarrow$ effective theory on AdS_5

Example for d = 4

- supersymmetric Yang-Mills theory (SYM)
- gauge symmetry SU(N)

field content

one	gauge field
four	Weyl fermions
six	(real) scalars

- dimensionless coupling-constant g_{YM}
- string theory on $AdS_5 \times S^5$

additional symmetries: $\mathcal{N} = 4$ supersymmety, *SO*(6) symmetry

UNI WÜ

AdS/CFT duality

dictionary:

 $g_{YM}^2 \propto {
m string \ coupling}$ $\lambda = g_{YM}^2 N \propto {
m string \ length^{-4}}$

strongest form

 N, λ arbitrary \longleftrightarrow quantum string theory

weak form

 $N \to \infty, \lambda$ large \longleftrightarrow point-particle limit, classical field theory: supergravity

MadS/CFT duality

I promised you a one-to-one map:

Field-operator map

CFT operator 0	\iff	AdS field φ with
$x \rightarrow \lambda x$		mass <i>m</i>
$O(x) \rightarrow \lambda^{-\Delta} O(x)$		$m^2 \propto \Delta (\Delta - d)$

near-boundary expansion:

$$arphi(z,t,ec{x}) \sim arphi_{(0)}(t,ec{x}) \cdot z^{d-\Delta} + \langle \Theta(t,ec{x}) \rangle \cdot z^{\Delta} + \cdots$$
 \uparrow
 \uparrow
source of \circ expectation value

$$Z_{CFT}[\varphi_{(0)}] = Z_{AdS}[\varphi] = \exp(iS_{AdS}[\varphi])$$

🚻 Generalisations

finite temperature \longleftrightarrow black hole

🚻 Generalisations

finite temperature \longleftrightarrow black hole

🚻 Different approaches

Top-down approach

- start with string theory in 10 or 11 dimensions dimensional reduction on compact space
- clear statement of the two sides of the duality
- established holographic dictionary

Bottom-up approach

- effective AdS Lagrangians with few ingredients to obtain desired features
 - e.g. confinement, superconductivity
- dual field theory not completely known
- advantage: allows to study qualitative behaviour of strongly-coupled field theories with such properties

UNI WÜ

Summary

Holographic principle:

gravity theory in region A \uparrow encode DoFs on ∂A .

CFT in *d* dimensions \uparrow theory on *AdS* in *d* + 1 dim.

one-to-one map between DoFs, same dynamics

- symmetries match
- strong coupled field theories
 - \rightarrow probes interesting new regime

Thank you for your attention

