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CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

@ Direct dark matter particle detection experiment

@ Direct: interaction of natural dark matter with the detector
= Rare

o Cryogenic detectors — 10-20mK

@ Detection by energy/heat deposition measured by a special
thermometer
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CRESST Detectors - Modules

Module components
TES

Cawo,

Light Detector
Reflective Foil
Copper Housing

\LTH

Bronze Clamp

o Dark Blue: Absorber crystal and
holdings sticks (CaWO4)

e Red: Thermometers (TES)

o Black: Light detector

o Light Blue: Scintillating and
reflective foil
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Superconductor stabilised within its
phase transition

Small temperature changes lead to
big resistance changes

Read out with a SQUID system

Very sensitive (Detector threshold
in the end ~100eV)

Requires a temperature
stabilization

Limited linear and dynamic range
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Data Acquisition

Continuous Data Acquisition

The analog voltage output from the detector side is continuously
sampled, digitized and written to disc:
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Data Acquisition

Triggering

120 eV pulse @ Threshold trigger

@ Knowledge of expected pulse
shape allows filtering

o Triggered data is stored in
the form of "events”
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Data Acquisition

Event 45622 -- Thu 3-Nov-2016 04:44:43.920 (CET)
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This is where my work usually starts.
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Parameters and Cuts

Data Analysis

Parameters derived from the events to better classify them and

reject bad events that cannot be analyzed properly e.g.:
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Data Analysis

Parameters and Cuts

Parameters derived from the events to better classify them and

reject bad events that cannot be analyzed properly e.g.:
Event 52107 -- Thu 3-Nov-2016 11:21:56.310 (CET)
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Data Analysis

Parameters and Cuts

Parameters derived from the events to better classify them and

reject bad events that cannot be analyzed properly e.g.:
Event 52107 -- Thu 3-Nov-2016 11:21:56.310 (CET)

% 2 I ~A-PH
£ 15
] -
< C
=
05
SRS U N
0SE Right - Left Baseline
,1;
=
T FE R Y -
P Y e e R
0 100 200 300 200 500
Time [ms]

15 /22



Data Analysis

Energy Calibration

As a first step for the energy calibration a better measure for the
pulse strength than the Pulse Height is required.
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Data Analysis

Energy Calibration

As a first step for the energy calibration a better measure for the
pulse strength than the Pulse Height is required.
Two possibilities:

Standard event fit Optimum filter
" filtered 120 eV pulse
:
- threshold
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Energy Calibration

The energy scale is fixed with a calibration measurement:

(There is another step in between which insures linearity and
removes time dependencies, and there are some limitations due to

the dynamic range of the detector) o



Data Analysis

Energy Calibration

The energy scale is fixed with a calibration measurement:
Fitted Amplitude
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(There is another step in between which insures linearity and
removes time dependencies, and there are some limitations due to
the dynamic range of the detector)
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Data Analysis

Event selection

Rare event search experiments require not only an ultra low
background environment but also a way to reject dominating
backgrounds. In CRESST this is done with the help of the light
channel:
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Data Analysis

Event selection

Rare event search experiments require not only an ultra low
background environment but also a way to reject dominating
backgrounds. In CRESST this is done with the help of the light
channel:
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Results

Limits (or discoveries)
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