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Field theoretic perspective

Whymassive graviton? 2/13

We have theories for massless andmassive particles of different spin s

massless massive
spin-0 Klein-Gordon Klein-Gordon
spin-1 Maxwell Proca
spin-2 GR ?

GR is the unique theory (unitary and Lorentz-invariant) for a massless
spin-2 field (in 4 dim) [Lovelock ’71]
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GR is a fully non-linear theory of gravity

massless massive
linear lin. gravity Fierz-Pauli 1939

non-linear Einstein 1915 ?

Coupling FP to matter problematic already for solar system tests
(vDVZ discontinuity) and requires non-linear completion (Vainshtein
mechanism) [van Dam&Veltman ’70; Zakharov ’70; Vainshtein ’72]
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GR is a fully non-linear theory of gravity

massless massive
linear lin.gravity Fierz-Pauli 1939

non-linear Einstein 1915 Massive (bi)gravity

Coupling FP to matter problematic already for solar system tests
(vDVZ discontinuity) and requires non-linear completion (Vainshtein
mechanism) [van Dam&Veltman ’70; Zakharov ’70; Vainshtein ’72]
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GR is a force with an infinite range
Late-time accelerated expansion requires a non-zeroΛ. Dark energy
∼ 70% of the whole energy budget of the Universe

Or: Modify gravitational sector in the IR!
To (IR-)modify gravity go around Lovelock’s theorem:

d ̸= 4 dimensions
higher-order derivatives of the metric tensor
non-locality
Add new DoF’s: scalars, vectors, tensors
Make graviton massive! → Gravitational force with finite range
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Consider small perturbations about Minkowksi: gµν = ηµν + hµν

Lagrangian of lin. gravity+ Fierz-Pauli mass term

L = −1

4
hαβE αβ

µν hαβ − m2

8
(hµνhµν − (1− a)h2)

Propagates a ghost with massm2 ∼ a−1. Fierz-Pauli tuning: a = 0.
[Fierz&Pauli ’39]

BUT: tuning does not persist non-linearly and the ghost will reappear
at higher order! [Boulwere&Deser ’72]
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Non-linear action for massless &massive graviton [deRham,Gabadadze,Tolley

’10; Hassan&Rosen ’11]

S = −
m2

g

2

∫
d4x

(√
gR(g)− 2m2√gV(g, f) + α2

√
f R(f)

)
+ Sm

Symmetric under gµν ↔ fµν
Potential is symmetric and involves square-root matrix

V(g, f) ⊃
√

g−1f,
√
gV(g, f) =

√
f V(f, g)

To which metric should matter couple? Physical metric?
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Sm =

∫
d4x

√
gLm(g; ∂ϕ, ϕ) +

√
fLm(f; ∂χ, χ)

Simplest choice: matter couples to onemetric (singly-coupled BG)
(classically) ghost-free [Hassan&Rosen ’11]

matter loops do not detune the potential, but generate coupling
between f and ϕ. BD ghost reappears above strong coupling scale
[deRham et.al. ’14, Heisenberg ’15]

Nice phenomenology, but gradient instabilities

Trivial extension: two independent matter sectors ϕ and χ

Samematter couples to both metrics: ϕ = χ

BD ghost at low energies [Yamashita et.al. ’14; deRham et.al. ’14]

Amatter field must not have two kinetic terms, but even thenmatter
loops bring back the BD ghost at unacceptable low scales
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Sm =

∫
d4x

√
hLm(h; ∂ϕ, ϕ)

Matter couples to eff. metric, composed out of g and f [deRham et.al. ’14;

Heisenberg ’14 & ’15]

hµν = a2gµν + 2ab gµλ(
√

g−1f )λν + b2fµν

Action completely symmetric between g and f
BD ghost reappears (classically) above strong coupling scale
Matter loops renormalize potential without detuning it
Nice phenomenology, but gradient instabilities
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hµν = a2gµν + 2ab gµλ(
√

g−1f )λν + b2fµν

Can be interpreted as a low-energy limit of a trimetric setup
Yields a method to compute corrections and to avoid BD ghost

For computations, switch to trimetric description
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The only known non-linear ghost-free theory for a massive graviton
involves 2metric tensors

More than 1 dynamical metric: Physical metric?

Either break equivalence principle between both metrics
Or BD ghost reappers below Planck scale (but above strong coupling
scale)

What’s next?

Other ghost-free symmetric matter couplings?
Study phenomenology, in particular in high energy environments (early
universe, BH)
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