On couplings to matter in bimetric theory

Marvin Lüben

Contents

1. Why massive graviton?
2. Introduction to bigravity

Linear theory \& Boulwere-Deser ghost
Bigravity
3. Matter couplings

Singly and doubly coupled
Effective composite metric
4. Summary

Why massive graviton?

Field theoretic perspective

". We have theories for massless and massive particles of different spin s

	massless	massive
spin-0	Klein-Gordon	Klein-Gordon
spin-1	Maxwell	Proca
spin-2	GR	$?$

..We have theories for massless and massive particles of different spin s

	massless	massive
spin-0	Klein-Gordon	Klein-Gordon
spin-1	Maxwell	Proca
spin-2	GR	$?$

.. GR is the unique theory (unitary and Lorentz-invariant) for a massless spin-2 field (in 4 dim) [Lovelock ' ${ }^{71]}$

Field theoretic perspective

"- GR is a fully non-linear theory of gravity

	massless	massive
linear	lin. gravity	Fierz-Pauli 1939
non-linear	Einstein 1915	$?$

\#. GR is a fully non-linear theory of gravity

	massless	massive
linear	lin. gravity	Fierz-Pauli 1939
non-linear	Einstein 1915	$?$

". Coupling FP to matter problematic already for solar system tests (vDVZ discontinuity) and requires non-linear completion (Vainshtein mechanism) [van Dam\&Veltman '70; Zakharov '70; Vainshtein '72]
\#. GR is a fully non-linear theory of gravity

	massless	massive
linear	lin.gravity	Fierz-Pauli 1939
non-linear	Einstein 1915	Massive (bi)gravity

F- Coupling FP to matter problematic already for solar system tests (vDVZ discontinuity) and requires non-linear completion (Vainshtein mechanism) [van Dam\&Veltman '70; Zakharov '70; Vainshtein '72]

Dark energy

F- GR is a force with an infinite range
". Late-time accelerated expansion requires a non-zero Λ. Dark energy $\sim 70 \%$ of the whole energy budget of the Universe

Dark energy

". GR is a force with an infinite range
". Late-time accelerated expansion requires a non-zero Λ. Dark energy $\sim 70 \%$ of the whole energy budget of the Universe
"= Or: Modify gravitational sector in the IR!
\#. GR is a force with an infinite range
:- Late-time accelerated expansion requires a non-zero Λ. Dark energy $\sim 70 \%$ of the whole energy budget of the Universe
". Or: Modify gravitational sector in the IR!
:- To (IR-)modify gravity go around Lovelock's theorem:
:- $d \neq 4$ dimensions
: higher-order derivatives of the metric tensor
:' non-locality
: Add new DoF's: scalars, vectors, tensors

F-GR is a force with an infinite range
:- Late-time accelerated expansion requires a non-zero Λ. Dark energy $\sim 70 \%$ of the whole energy budget of the Universe
= Or: Modify gravitational sector in the IR!
:- To (IR-)modify gravity go around Lovelock's theorem:
: $d \neq 4$ dimensions
:- higher-order derivatives of the metric tensor
:- non-locality
.- Add new DoF's: scalars, vectors, tensors
". Make graviton massive! \rightarrow Gravitational force with finite range

Introduction to bigravity

Linear theory \& Boulwere-Deser ghost

- Consider small perturbations about Minkowksi: $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

Linear theory \& Boulwere-Deser ghost

- Consider small perturbations about Minkowksi: $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$
". Lagrangian of lin. gravity

$$
\mathcal{L}=-\frac{1}{4} h_{\alpha \beta} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}
$$

Linear theory \& Boulwere-Deser ghost

". Consider small perturbations about Minkowksi: $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$
" Lagrangian of lin. gravity + Fierz-Pauli mass term

$$
\mathcal{L}=-\frac{1}{4} h_{\alpha \beta} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}-\frac{m^{2}}{8}\left(h_{\mu \nu} h^{\mu \nu}-(1-a) h^{2}\right)
$$

(: Propagates a ghost with mass $m^{2} \sim a^{-1}$. Fierz-Pauli tuning: $a=0$. [Fierz\&Pauli '39]

Linear theory \& Boulwere-Deser ghost

". Consider small perturbations about Minkowksi: $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$
" Lagrangian of lin. gravity + Fierz-Pauli mass term

$$
\mathcal{L}=-\frac{1}{4} h_{\alpha \beta} \mathcal{E}_{\mu \nu}^{\alpha \beta} h_{\alpha \beta}-\frac{m^{2}}{8}\left(h_{\mu \nu} h^{\mu \nu}-(1-a) h^{2}\right)
$$

\#. Propagates a ghost with mass $m^{2} \sim a^{-1}$. Fierz-Pauli tuning: $a=0$. [FierzzPauli ’39]
.- BUT: tuning does not persist non-linearly and the ghost will reappear at higher order! [Boulwere8Deser '72]
." Non-linear action for massless \& massive graviton
[deRham, Gabadadze, Tolley
'10; Hassan\&Rosen '11]

$$
S=-\frac{m_{g}^{2}}{2} \int \mathrm{~d}^{4} x(\sqrt{g} R(g)
$$

"- Non-linear action for massless \& massive graviton
[deRham, Gabadadze, Tolley
'10; Hassan\&Rosen '11]

$$
S=-\frac{m_{g}^{2}}{2} \int \mathrm{~d}^{4} x\left(\sqrt{g} R(g)-2 m^{2} \sqrt{g} V(g, f)+\alpha^{2} \sqrt{f} R(f)\right)
$$

" Symmetric under $g_{\mu \nu} \leftrightarrow f_{\mu \nu}$
:- Potential is symmetric and involves square-root matrix

$$
V(g, f) \supset \sqrt{g^{-1} f}, \quad \sqrt{g} V(g, f)=\sqrt{f} V(f, g)
$$

". Non-linear action for massless \& massive graviton
[deRham, Gabadadze, Tolley
'10; Hassan\&Rosen '11]

$$
S=-\frac{m_{g}^{2}}{2} \int \mathrm{~d}^{4} x\left(\sqrt{g} R(g)-2 m^{2} \sqrt{g} V(g, f)+\alpha^{2} \sqrt{f} R(f)\right)+S_{\mathrm{m}}
$$

- Symmetric under $g_{\mu \nu} \leftrightarrow f_{\mu \nu}$
:- Potential is symmetric and involves square-root matrix

$$
V(g, f) \supset \sqrt{g^{-1} f}, \quad \sqrt{g} V(g, f)=\sqrt{f} V(f, g)
$$

To which metric should matter couple? Physical metric?

Matter couplings

Singly and doubly coupled

$$
S_{\mathrm{m}}=\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\mathrm{m}}(g ; \partial \phi, \phi)
$$

.- Simplest choice: matter couples to one metric (singly-coupled BG)
\% (classically) ghost-free [HassankRosen ' ${ }^{11]}$

- matter loops do not detune the potential, but generate coupling between f and ϕ. BD ghost reappears above strong coupling scale [deRham et.al. '14, Heisenberg '15]
:- Nice phenomenology, but gradient instabilities

Singly and doubly coupled

$$
S_{\mathrm{m}}=\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\mathrm{m}}(g ; \partial \phi, \phi)+\sqrt{f} \mathcal{L}_{\mathrm{m}}(f ; \partial \chi, \chi)
$$

(" Simplest choice: matter couples to one metric (singly-coupled BG)
: (classically) ghost-free [HassankRosen ' ${ }^{11]}$
:- matter loops do not detune the potential, but generate coupling between f and ϕ. BD ghost reappears above strong coupling scale [deRham et.al. '14, Heisenberg '15]
:- Nice phenomenology, but gradient instabilities
.- Trivial extension: two independent matter sectors ϕ and χ

Singly and doubly coupled

$$
S_{\mathrm{m}}=\int \mathrm{d}^{4} x \sqrt{g} \mathcal{L}_{\mathrm{m}}(g ; \partial \phi, \phi)+\sqrt{f} \mathcal{L}_{\mathrm{m}}(f ; \partial \chi, \chi)
$$

" . Simplest choice: matter couples to one metric (singly-coupled BG)
\% (classically) ghost-free [HassankRosen , ${ }^{11]}$

- matter loops do not detune the potential, but generate coupling between f and ϕ. BD ghost reappears above strong coupling scale [deRham et.al. '14, Heisenberg '15]
:- Nice phenomenology, but gradient instabilities
F- Trivial extension: two independent matter sectors ϕ and χ
- Same matter couples to both metrics: $\phi=\chi$

5- BD ghost at low energies [Yamashita et.al. ' 14 ; deRham et.al. ' ${ }^{14]}$
". A matter field must not have two kinetic terms, but even then matter loops bring back the BD ghost at unacceptable low scales

Effective composite metric

$$
S_{\mathrm{m}}=\int \mathrm{d}^{4} x \sqrt{h} \mathcal{L}_{\mathrm{m}}(h ; \partial \phi, \phi)
$$

\#- Matter couples to eff. metric, composed out of g and f [deeRham et.ar. ' ${ }^{14}$; Heisenberg '14 \& '15]

$$
h_{\mu \nu}=a^{2} g_{\mu \nu}+2 a b g_{\mu \lambda}\left(\sqrt{g^{-1} f}\right)_{\nu}^{\lambda}+b^{2} f_{\mu \nu}
$$

Effective composite metric

$$
S_{\mathrm{m}}=\int \mathrm{d}^{4} x \sqrt{h} \mathcal{L}_{\mathrm{m}}(h ; \partial \phi, \phi)
$$

\#- Matter couples to eff. metric, composed out of g and f [deRham et.al. ' ${ }^{14}$;
Heisenberg ' 14 \& '15]

$$
h_{\mu \nu}=a^{2} g_{\mu \nu}+2 a b g_{\mu \lambda}\left(\sqrt{g^{-1} f}\right)_{\nu}^{\lambda}+b^{2} f_{\mu \nu}
$$

:- Action completely symmetric between g and f
:- BD ghost reappears (classically) above strong coupling scale
5- Matter loops renormalize potential without detuning it

Effective composite metric

$$
S_{\mathrm{m}}=\int \mathrm{d}^{4} x \sqrt{h} \mathcal{L}_{\mathrm{m}}(h ; \partial \phi, \phi)
$$

\#- Matter couples to eff. metric, composed out of g and f [deRham et.al. '14;
Heisenberg ' 14 \& '15]

$$
h_{\mu \nu}=a^{2} g_{\mu \nu}+2 a b g_{\mu \lambda}\left(\sqrt{g^{-1} f}\right)_{\nu}^{\lambda}+b^{2} f_{\mu \nu}
$$

-. Action completely symmetric between g and f
:- BD ghost reappears (classically) above strong coupling scale

- Matter loops renormalize potential without detuning it
:- Nice phenomenology, but gradient instabilities

Effective composite metric [muschmidt-my ${ }^{183}$

$$
h_{\mu \nu}=a^{2} g_{\mu \nu}+2 a b g_{\mu \lambda}\left(\sqrt{g^{-1} f}\right)_{\nu}^{\lambda}+b^{2} f_{\mu \nu}
$$

". Can be interpreted as a low-energy limit of a trimetric setup
= Yields a method to compute corrections and to avoid BD ghost

$$
h_{\mu \nu}=a^{2} g_{\mu \nu}+2 a b g_{\mu \lambda}\left(\sqrt{g^{-1} f}\right)_{\nu}^{\lambda}+b^{2} f_{\mu \nu}
$$

\# Can be interpreted as a low-energy limit of a trimetric setup
.. Yields a method to compute corrections and to avoid BD ghost
." For computations, switch to trimetric description

Summary

Summary

.. The only known non-linear ghost-free theory for a massive graviton involves 2 metric tensors
". The only known non-linear ghost-free theory for a massive graviton involves 2 metric tensors
.- More than 1 dynamical metric: Physical metric?
:- Either break equivalence principle between both metrics
:- Or BD ghost reappers below Planck scale (but above strong coupling scale)
.. The only known non-linear ghost-free theory for a massive graviton involves 2 metric tensors
.- More than 1 dynamical metric: Physical metric?
:- Either break equivalence principle between both metrics

- Or BD ghost reappers below Planck scale (but above strong coupling scale)
:What's next?
:- Other ghost-free symmetric matter couplings?
: Study phenomenology, in particular in high energy environments (early universe, BH)

