

TRISTAN measurements at the Troitsk nu-mass experiment

Tim Brunst, IMPRS Young Scientist Workshop at Ringberg Castle, September 8th 2018

Max Planck Institute for Physics, Munich KATRIN Collaboration – TRISTAN Group

www.mpp.mpg.de

Troitsk 1: May 2017

Troitsk 2: November 2017

Troitsk 3: April 2018

Outline

v's in the tritium ß-spectrum

- Troitsk measurements
- Integral analysis
- Summary & Outlook

Imprint of v's on tritium β -spectrum

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} \propto C F(Z,E) p(E+m_{\mathrm{e}})(E_{0}-E) \sqrt{(E_{0}-E)^{2}-m_{\beta}^{2}(\nu_{\mathrm{e}})}$$

6

KATRIN Collaboration TRISTAN Group

7

KATRIN and **TRISTAN**

The KATRIN experiment measures the neutrino mass

- in a model-independent way
- via ultrahigh precision measurements of the kinematics of electrons from tritium beta-decay

What else can it be used for?

Sterile v's

- A sterile neutrino is a lepton with no ordinary electroweak interaction except those induced by mixing (JCAP 2017, 10.1088/1475-7516/2017/01/025)
- keV-scale sterile neutrinos (~ 1 50 keV)
 - Suitable dark matter candidate

Imprint of sterile v's on ß-spectrum

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \cos^2(\theta) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\beta}) + \sin^2(\theta) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\mathrm{s}})$$

Imprint of sterile v's on β -spectrum

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \cos^2(\theta) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\beta}) + \sin^2(\theta) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\mathrm{s}})$$

Imprint of sterile v's on ß-spectrum

KATRIN and **TRISTAN**

The KATRIN experiment measures the neutrino mass

- in a model-independent way
- via ultrahigh precision measurements of the kinematics of electrons from tritium beta-decay

- The TRISTAN project builds a new detector for KATRIN
 - in order to be able to handle the high rates from the tritium source
 - and thus search for a sterile neutrino

Troitsk re-analysis (2011) selected data from 1994-2004: $m(v_e) < 2.05 eV (95\% C.L.)$

Troitsk nu-mass experiment

KATKIN Collaboration

TRISTAN Group

Troitsk measurements

Troitsk-1 (May-June 2017)

CEA-System with 1 mm pixels 44 e- (400 eV fwhm @ 18 keV)

Main goals

- Take first tritium data and proof detector functionality
- Detector characterization with electrons in KATRIN-like environment
- Develop differential analysis strategy and tools

Troitsk-2 (Nov-Dec 2017)

XGLab-System with 2 mm pixels 26 e⁻ (300 eV fwhm @ 18 keV)

Main goals

- Gather more statistics in relevant measurements
- Test of XGLab system
- Cross-check of analysis strategy with Troitsk-1 and do further steps

Troitsk-3 (April 2018)

XGLab-System with 2 mm pixels 26 e⁻ (300 eV fwhm @ 18 keV)

Main goals

- Integrate DAQ into Troitsk system
- Develop integral analysis strategy and tools and compare to differential measurement

Troitsk measurements

Troitsk-1 (May-June 2017)

CEA-System with 1 mm pixels 44 e- (400 eV fwhm @ 18 keV)

Main goals

- Take first tritium data and proof detector functionality
- Detector characterization with electrons in KATRIN-like environment
- Develop differential analysis strategy and tools

Troitsk-2 (Nov-Dec 2017)

XGLab-System with 2 mm pixels 26 e⁻ (300 eV fwhm @ 18 keV)

Main goals

- Gather more statistics in relevant measurements
- Test of XGLab system
- Cross-check of analysis strategy with Troitsk-1 and do further steps

 Develop integral analysis strategy and tools and compare to differential measurement

5

$\frac{1}{\Delta_{f^*} \Delta_g \ge \frac{1}{2} t}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Measurement methods

Measurement methods

integral change retarding potential in steps measurement to cut lower part of the spectrum 1.0 use detector to 0.8 count electrons Rate (cps) 6.0 1.0 light v 0.8 heavy v 0.2 0.6 (cbs 0.0 **L** 0 5 10 Rate 7.0 Energy (keV) 0.2 0.0 0 5 10 15 20 Energy (keV)

Measurement methods

main systematic effect: detector energy response (resolution, dead layer, backscattering, ...)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Effect	Correction
FSD	Find model for energy dependent ground states (Corny) Integrate into tritium model
Multiplicity cut	Find multiplicity events and remove from px0 Use only px0 for analysis
Calibration	Detemine turning point in tritium spectra and connect to HV Fit linearly and determine calibration parameters
Bump subtraction	Use empty_2 spectra Fit position and amplitude Subtract bump
Events below threshold	Fit region slightly above detection threshold Extrapolate as constant offset
Dead time	Use exp("DT-window" * "rate") Multiply integral spectrum before 15kV-monitor-correction
Adiabaticity	Simulate adiabaticity in spectrometer and fit linear function Multiply with integral spectrum before 15kV-monitor-correction
Rate decrease and fluctuation	Fit 15 kV monitor points linearly in every set Calculate correction values for every HV in every set Multiply with intergal spectrum
Stacking	Add the rates of various sets and divide by the amount Fit resulting spectrum
Source Scattering (trapping effect)	Simulate efficiency Fit linearly and determine HV dependent correction function Multiply with intergal spectrum as a parameters in the fit
Background	Put constant background as free parameter in final fit

KATRIN Collaboration TRISTAN Group

$$\chi^{2} = \sum \frac{(x - y(HV; A, E_{0}) * (m * HV + c) - B)^{2}}{\sigma^{2}}$$
$$+ (scat - scat_{0}) M^{-1} (scat - scat_{0})^{T}$$

- 5 parameters
 - Normalization (A)
 - Endpoint (E_0)
 - Background (B)
 - Scattering slope (m)
 - Scattering offset (c)

- Include a sterile neutrino in the model
- Scan through sterile neutrino parameter space

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \cos^2(\theta) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\beta}) + \sin^2(\theta) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_{\mathrm{s}})$

- Draw line at χ²(NoSterile) + 9.24 (10% quantile for χ²-distr. with 5 dof)
- Exclusion curve for 90% C.L.

Summary

Successful operation

- of two TRISTAN prototype detector systems
- In two different measurement modes
- at Troitsk nu-mass experiment
- Good progress in analysis strategy development
- Results will be presented at KATRIN Collaboration Meeting in November 2018
- No sterile neutrino yet

Outlook

- Pixel design:
 - SDD with integrated nJFET
 - Pixel size: ~ 3 mm diameter

Module design:

- 166 pixels
- Module size: ~ 4x4 cm²
- Completion: Feb 2019
- Final detector design:
 - 21 modules \rightarrow 3500 pixels
 - Detector size: ~ 20 cm diameter
 - Completion: 2023

Thank you .

... and

and the whole Troitsk nu-mass team,

- Susanne Mertens Thierry Lasserre Konrad Altenmüller
- Anton Huber
- Thibaut Houdy
- Daniel Siegmann
- Tobias Bode

and many more

Backup

Troitsk measurements

Troitsk-1 (May-June 2017)

CEA-System with 1 mm pixels 44 e- (400 eV fwhm @ 18 keV)

Main goals

- Take first tritium data and proof detector functionality
- Detector characterization with electrons in KATRIN-like environment
- Develop differential analysis strategy and tools

Troitsk-2 (Nov-Dec 2017)

XGLab-System with 2 mm pixels 26 e⁻ (300 eV fwhm @ 18 keV)

Main goals

- Gather more statistics in relevant measurements
- Test of XGLab system
- Cross-check of analysis strategy with Troitsk-1 and do further steps

Troitsk-3 (April 2018)

XGLab-System with 2 mm pixels 27 e⁻ (300 eV fwhm @ 18 keV)

Main goals

Integrate DAQ into Troitsk system

 Develop integral analysis strategy and tools and compare to differential measurement

 $\left| \begin{array}{c} \gamma \end{array} \right|$

Source

Experiment

Differential analysis

Differential analysis

KATRIN Collaboration TRISTAN Group

KATRIN Collaboration TRISTAN Group

Theoretical beta spectrum

Model of beta spectrum

The response matrix

- 1. describes the response of the setup to electrons with
 - a certain energy for all energies
- 2. includes all relevant systematic effects

- Backscattering probability ~ 20% → two options
 - Electron is lost → two options
 - Event above detection threshold → Event detected
 - Event below detection threshold \rightarrow Simulate spectral shape and estimate systematic error
 - **Electron comes back onto the detector** \rightarrow two options
 - Electron hits the same pixel \rightarrow Event falls into filter integration time
 - Electron hits another pixel → Cut multiplicity event within certain time window

