Feynman periods - on graphs, integrals, polytopes and tropical physics

Erik Panzer

All Souls College (Oxford)

28th July 2019 MPP Munich

- Feynman graph $G \mapsto$ Feynman integral $\Phi(G, \{m_i^2, \vec{p}_i \cdot \vec{p}_j\})$
- compute more graphs $\sum_{G} \Phi(G) \Rightarrow$ higher precision

Definition

A spanning tree $T \subset G$ is a spanning, simply connected subgraph.

$$ST\left(\begin{array}{c} \\ \\ \\ \end{array} \right), \begin{array}{c} \\ \\ \end{array} \right), \ldots$$

Definition

The graph polynomial \mathcal{U} and Feynman period of G are

$$\mathcal{U} = \sum_{T \in \mathsf{ST}(\mathcal{G})} \prod_{e \notin T} x_e \qquad \text{and} \qquad \mathcal{P}(\mathcal{G}) = \left(\prod_{e > 1} \int_0^\infty \! \mathrm{d} x_e \right) \frac{1}{\mathcal{U}^2|_{x_1 = 1}}$$

$$G = \bigoplus$$
 \Rightarrow $\mathcal{U} = x_1 + x_2$ and $\mathcal{P}\left(\bigoplus\right) = \int_0^\infty \frac{\mathrm{d}x_2}{(1+x_2)^2} = 1$

Definition

The graph polynomial ${\cal U}$ and Feynman period of G are

$$\mathcal{U} = \sum_{T \in \mathsf{ST}(G)} \prod_{e \notin T} x_e \qquad \text{and} \qquad \mathcal{P}(G) = \left(\prod_{e > 1} \int_0^\infty \! \mathrm{d} x_e \right) \frac{1}{\mathcal{U}^2|_{x_1 = 1}}$$

$$G = \bigoplus$$
 \Rightarrow $\mathcal{U} = x_1 + x_2$ and $\mathcal{P}\left(\bigoplus\right) = \int_0^\infty \frac{\mathrm{d}x_2}{(1 + x_2)^2} = 1$

Assumptions:

1 logarithmic divergence: $\omega(G) := |E(G)| - 2 \cdot \ell(G) \stackrel{!}{=} 0$

$$\ell(G) = h_1(G) = |E(G)| - |V(G)| + 1$$
 (loop number)

 $\textbf{ 0} \ \ \text{no subdivergences:} \qquad \omega(\gamma) > 0 \quad \text{for all} \quad \emptyset \neq \gamma \subsetneq G$

All such periods contribute to the β -function of the field theory. \Rightarrow renormalization constants, running coupling, critical exponents

These are periods in the sense of Kontsevich and Zagier
 ⇒ interesting transcendental numbers, motivic Galois theory

Example

$$\mathcal{P}\left(\bigcap_{\mathbb{R}^{5}_{+}}\frac{\mathrm{d}x_{2}\mathrm{d}x_{3}\mathrm{d}x_{4}\mathrm{d}x_{5}\mathrm{d}x_{6}}{(x_{1}x_{2}x_{3}+15\ \mathsf{more\ terms})^{2}|_{x_{1}=1}}=6\zeta(3)=6\sum_{n=1}^{\infty}\frac{1}{n^{3}}$$

Sometimes expressible as multiple zeta values

$$\zeta(s_1,\ldots,s_d) = \sum_{0 < n_1 < \cdots < n_d} \frac{1}{n_1^{s_1} \cdots n_d^{s_d}}$$

Example (Broadhurst & Schnetz)

$$\mathcal{P}\left(\begin{array}{|c|c|c|c|c|} \hline \mathcal{P}\left(\begin{array}{|c|c|c|} \hline \\ & 160 \\ \hline \end{array}\right) = \frac{92943}{160}\zeta(11) + 896\zeta(3)\left(\frac{27}{80}\zeta(3,5) + \frac{45}{64}\zeta(3)\zeta(5) - \frac{261}{320}\zeta(8)\right) \\ + \frac{3381}{20}\left(\zeta(3,5,3) - \zeta(3,5)\zeta(3)\right) - \frac{1155}{4}\zeta(3)^2\zeta(5) \end{array}$$

• These integrals are very hard to compute (even numerically).

Only two infinite families of periods are known: wheels and zigzags

Theorem (Broadhurst 1985)

$$\mathcal{P}(\mathbf{W}_n) = \binom{2n-2}{n-1} \zeta(2n-3)$$

Theorem (Brown & Schnetz 2012)

$$\mathcal{P}(ZZ_n) = 4 \frac{(2n-2)!}{n!(n-1)!} \left(1 - \frac{1 - (-1)^n}{2^{2n-3}}\right) \zeta(2n-3)$$

> 1000 more periods are known [Broadhurst, Schnetz, Panzer]

When is $\mathcal{P}(G_1) = \mathcal{P}(G_2)$?

Product:

$$\mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array}\right) = \mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) \cdot \mathcal{P}\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$$

Example

$$\mathcal{P}\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \mathcal{P}\left(\begin{array}{c} \\ \\ \\ \end{array}\right)^2 = (6\zeta(3))$$

② Planar duality: $\mathcal{P}(G) = \mathcal{P}(G^{\text{dual}})$

3 Completion: If G is 4-regular and v, w are vertices G, then

$$\mathcal{P}(G \setminus v) = \mathcal{P}(G \setminus w)$$

Example

$$\mathcal{P}\left(\bigcup_{v} \bigvee_{v} \bigvee_{v} \bigvee_{v}\right) = \mathcal{P}\left(\bigcup_{w} \bigvee_{v} \bigvee_{v} W\right) = \mathcal{P}\left(\bigcup_{v} \bigvee_{v} \bigvee_{v} W\right)$$

Twist:

[drawing by Crump]

Goal:

Construct simpler graph invariants with those symmetries.

$$c_2(G)(p) = rac{1}{p^2} \left| \left\{ ec{x} \in (\mathbb{Z}/p\mathbb{Z})^{N} \colon \ \mathcal{U}(ec{x}) = 0
ight\} \right|$$

$$P_{7,11}$$

Goal:

[Crump]

yes

yes

 \mathcal{H} epp

Construct simpler graph invariants with those symmetries.

$$c_2(G)(p) = rac{1}{p^2} \left| \left\{ \vec{x} \in (\mathbb{Z}/p\mathbb{Z})^{\mathsf{N}} \colon \ \mathcal{U}(\vec{x}) = 0 \right\} \right|$$

$P_{7,11}$												
	р	2	3	5	7	11	13	17	19	23		
_	$c_2(p)$	1	0	1	-1	1	-1	1	-1	1		
	Perm(p)		0	1	1	1	11	5	0	22		
	product	duality			completion			twist				
c ₂ [Schnetz]	yes	yes [Doryn]			•			•		few values, sees number theory		
permanent	yes	yes			yes			yes	alı	almost faithful		

yes

(conj.),

faithful

sees magnitude

yes

Hepp bound

$$\mathcal{H}(G) := \left(\prod_{e>1} \int_0^\infty \! \mathrm{d} x_e \right) \frac{1}{\mathcal{U}_{\mathsf{max}}^2|_{x_1=1}} \quad \mathsf{where} \quad \mathcal{U}_{\mathsf{max}} := \max_{T \in \mathsf{ST}} \prod_{e \notin T} x_e$$

Example

$$\mathcal{H}\left(\bullet\right) = \int_0^\infty \frac{\mathrm{d}x_2}{\left(\max\{1, x_2\}\right)^2} = \int_0^1 \mathrm{d}x_2 + \int_1^\infty \frac{\mathrm{d}x_2}{x_2^2} = 2$$

- $\mathcal{H}(G) > \mathcal{P}(G) > \mathcal{H}(G)/|ST(G)|^2$
- fulfils the four symmetries
- $\mathcal{H}(G) \in \mathbb{Q}_{>0}$
- can be computed very efficiently

Theorem

$$\mathcal{H}(G) = \sum_{\substack{\gamma_1 \subset \gamma_2 \subset \cdots \subset \gamma_\ell = G \ each \ \gamma_i \ is \ IPI}} rac{|\gamma_1| \cdot |\gamma_2 \setminus \gamma_1| \cdots |G \setminus \gamma_{\ell-1}|}{\omega(\gamma_1) \cdots \omega(\gamma_{\ell-1})}$$

Hepp-Period correlation

Conjecture

$$\mathcal{H}(\textit{G}_{1}) = \mathcal{H}(\textit{G}_{2}) \qquad \Leftrightarrow \qquad \mathcal{P}(\textit{G}_{1}) = \mathcal{P}(\textit{G}_{2})$$

$$\mathcal{H}(G_1) = \mathcal{H}(G_2) \qquad \Leftrightarrow \qquad \mathcal{P}(G_1) = \mathcal{P}(G_2)$$

For example, we find a pair of unknown 8 loop periods with:

- $\mathcal{H}(P_{8,30}) = \frac{1724488}{3} = \mathcal{H}(P_{8,36})$
- $\mathcal{P}(P_{8,30}) \approx 505.5 \approx \mathcal{P}(P_{8,36})$

?

Spanning tree polytope and its polar (relevant for sector decomposition):

$$ec{\mathbf{v}}_T = ec{T} - ec{T^c} \in \{1, -1\}^{E_G}$$
 $\mathcal{N}_G = \operatorname{conv}\left\{ ec{\mathbf{v}}_T \colon \ T \in \operatorname{ST} \right\} \subset \mathbb{R}^{E_G}$
 $\mathcal{N}_G^\circ = \bigcap_{T \in \operatorname{ST}} \left\{ ec{a} \colon \ ec{a} \cdot ec{\mathbf{v}}_T \leq 1 \right\}$

The Hepp bound is the volume of the polar polytope

$$\mathcal{H}(G) = (E_G - 1)! \cdot \mathsf{Vol}\left(\mathcal{N}_G^{\circ} \cap \{a_1 = 0\}\right)$$

Spanning tree polytope and its polar (relevant for sector decomposition): $\vec{r} = \vec{T}$ $\vec{r} \in \{1, 1\}^{E_G}$

$$\begin{split} \vec{\mathsf{v}}_T &= \vec{T} - \vec{T^c} \in \{1, -1\}^{\mathsf{E}_G} \\ \mathcal{N}_G &= \mathsf{conv}\left\{\vec{\mathsf{v}}_T \colon \ T \in \mathsf{ST}\right\} \subset \mathbb{R}^{\mathsf{E}_G} \\ \mathcal{N}_G^\circ &= \bigcap_{T \in \mathsf{ST}} \left\{\vec{a} \colon \ \vec{a} \cdot \vec{\mathsf{v}}_T \leq 1\right\} \end{split}$$

The Hepp bound is the volume of the polar polytope

$$\mathcal{H}(G) = (E_G - 1)! \cdot \mathsf{Vol}\left(\mathcal{N}_G^{\circ} \cap \{a_1 = 0\}\right)$$

Facets of $\mathcal{N}_G/\mathrm{vertices}$ of \mathcal{N}_G° are indexed by subgraphs:

$$\{\gamma \subset {\sf G}\colon \ \gamma \ {\sf and} \ {\sf G}/\gamma \ {\sf are} \ 2{\sf -vertex} \ {\sf connected}\}$$

Factorisation of the facets:

$$\mathcal{N}_{G} \cap \{ \vec{\gamma} \cdot \vec{a} = \omega_{\gamma} \} \cong \mathcal{N}_{\gamma} \times \mathcal{N}_{G/\gamma}$$

Roughly, \mathcal{N}_G looks like a cube, and \mathcal{N}_G° is a cross-polytope: very "spikey" and all volume concentrated near the centre.

Multivariate version & canonical form

Now consider arbitrary indices:

$$\mathcal{H}(G; \vec{a}) := \left(\prod_{e>1} \int_0^\infty x_e^{a_e - 1} \mathrm{d}x_e\right) \frac{1}{\mathcal{U}_{\mathsf{max}}^{D/2}|_{\mathsf{x}_1 = 1}}$$

The dimension is fixed by $\omega(G) = \sum_{e} a_{e} - (D/2) \cdot \ell(G) \stackrel{!}{=} 0$.

Example

The flag formula generalizes to this case, e.g.

$$\mathcal{H}\left(\underbrace{\frac{1}{3}}_{2}\underbrace{\frac{1}{3}}_{4};\vec{a}\right) = \frac{1}{a_{1}a_{2}a_{3}a_{4}} \times \left\{ \frac{(a_{1} + a_{2} + a_{3})a_{4}}{a_{1} + a_{2} + a_{3} - D/2} + \frac{(a_{1} + a_{2} + a_{4})a_{3}}{a_{1} + a_{2} + a_{4} - D/2} + \frac{(a_{3} + a_{4})(a_{1} + a_{2})}{a_{3} + a_{4} - D/2} \right\}$$

Consider the Hepp bound $\mathcal{H}(G; \vec{a})$:

- it is a rational function in \vec{a}
- it has simple poles
- ullet at hyperplanes $\omega(\gamma)=0$ for 1PI subgraphs γ

Factorization of residues

$$\operatorname{Res}_{\omega(\gamma)=0} \mathcal{H}(G; \vec{a}) = \mathcal{H}(\gamma; \vec{a}_{\gamma}) \Big|_{\omega(\gamma)=0} \cdot \mathcal{H}(G/\gamma; \vec{a}_{G/\gamma}) \Big|_{\omega(G/\gamma)=0}$$

Example: edge contraction

$$\operatorname{Res}_{a_e=0} \mathcal{H}(G; \vec{a}) = \mathcal{H}(G/e; \vec{a}_{G/e})$$

• it is the volume of a polytope:

$$\mathcal{H}(\mathit{G}; ec{\mathit{a}}) = (\mathit{E}-1)! \cdot \mathsf{Vol}\left(\left(\mathcal{N}_{\mathit{G}} + (ec{\mathit{a}} - ec{1})\right)^{\circ} \cap \{\mathit{a}_{1} = 0\}\right)$$

⇒ canonical form

The period of a graph can be written as

$$\mathcal{P}(G) = (N-2)! \int_{\gamma_N=0} \frac{\Omega}{[\omega(\vec{y})]^{N-1}} F(\vec{y})$$

where $F(\vec{y})$ is the projectively invariant function

$$F(\vec{y}) := \frac{1}{(N-2)!} \int_0^\infty \lambda^{N-2} d\lambda \left\{ \sum_{T \in \mathsf{ST}} \exp\left(\frac{\lambda}{2} \frac{\vec{y} \cdot \vec{\mathsf{v}}_T}{\vec{y} \cdot \vec{\mathsf{v}}_{T_{\mathsf{max}}}}\right) \right\}^{-D/2}$$

The Hepp bound is precisely obtained by the approximation $F \leq 1$.

Lemma

Within each tree sector (constant T_{max}), the function F is log-concave.

⇒ efficient sampling of log-concave distributions

Summary

- There is a rational version of Feynman periods.
- It captures identities and gives numeric estimates.
- Volume of a polytope with factorizing residues.
- Generalizes to matroids.

Outlook

- add kinematics
- dimensional regularization
- renormalization
- tropical field theory
- asymptotics
- numerics for Feynman integrals