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e Feynman graph G +~— Feynman integral ®(G, {m?,p; - p;})
e compute more graphs Y- ®(G) = higher precision
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not spanning not connected has a loop

Definition
A spanning tree T C G is a spanning, simply connected subgraph.




Definition

The graph polynomial ¢/ and Feynman period of G are

U= 3% JIx ad P(G)= (H/dx‘9>u2lxl1

TeST(G) e¢T e>1

. N . o0 dX2 N
_O = U=x1+x and P(@)—/O 7(14_)(2)2—1




Definition

The graph polynomial ¢/ and Feynman period of G are

U= > J]x and P(G):(

TeST(G) e¢T

. N . o0 dX2 N
G—@ = U=x1+x and P(@)—/O 7(14_)(2)2—1

Assumptions:

© logarithmic divergence: w(G) := |E(G)| —2-4(G) 20
(G) = hi(G) = |E(G)| — |V(G)|+1 (loop number)

@ no subdivergences: w(y) >0 forall 0#~CG

All such periods contribute to the S-function of the field theory.
= renormalization constants, running coupling, critical exponents



@ These are periods in the sense of Kontsevich and Zagier
= interesting transcendental numbers, motivic Galois theory

dxodxzdxadxsdxg > 1
P /Ri (x1x2x3 + 15 more terms)?|,,—1 @) n;l n3

@ Sometimes expressible as multiple zeta values

C(S]_,...,Sd): Z ﬁ
0<m<-<ng 1

Example (Broadhurst & Schnetz)

P <%) = 92%43¢(11) + 896¢(3) (24 3 5)+ (3)¢(5) - 355¢(8))
+ 3381 (¢(3,5,3) — ¢(3,5)¢(3 ”455C(3)2C(5)

@ These integrals are very hard to compute (even numerically).




Only two infinite families of periods are known: wheels and zigzags

QP&

Theorem (Broadhurst 1985)

P(W,) = (zn”_‘f) (2n-3)

K A LN AN

Theorem (Brown & Schnetz 2012)

P(2Zn) = 4—( e _21))'! (1- it ;2(n_§)n)g‘(2n ~3)

> 1000 more periods are known [Broadhurst, Schnetz, Panzer]




When is P(Gy) = P(G»)?







© Completion: If G is 4-regular and v, w are vertices G, then

P(G\v) = P(G\w)

[drawing by Crump]



Construct simpler graph invariants with those symmetries. \
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Construct simpler graph invariants with those symmetries.

p 2 3 5 7 11 13 17 19 23
op) 101 -1 1 -1 1 -1 1
Perm(p) 01 1 1 11 5 0 22
product duality completion twist
o)) yes yes forp=2 open few values, sees
[Schnetz] [Doryn]  [Yeats, Doryn] number theory
permanent yes yes yes yes almost faithful
[Crump]
Hepp yes yes yes yes  faithful (conj.),

sees magnitude



H/ dxe | ———— where Umax := max H Xe
|X 1 TeST
e>1 max 1=

e¢T

H :/ooo(max(;Tz}) /dx2+/ dx2:

o H(G) > P(G) > H(G)/|ST(G)]?
o fulfils the four symmetries

H(G) € Qo

@ can be computed very efficiently
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Hepp-Period correlation
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H(G1) = H(G2) < P(G1) = P(G2)




H(G1) = H(G2) < P(G1) = P(G2)

For example, we find a pair of unknown 8 loop periods with:
o H(Pg30) = *725% = H(Psg 36)
) P(ng,o) ~ 505.5 ~ P(P8736)




Spanning tree polytope and its polar (relevant for sector decomposition):

Vr=T—Tece{l,-1}F
Ng=conv{Vr: T ST} c RFe
Ne= ) {53 3-vr<1}

TeST

The Hepp bound is the volume of the polar polytope
H(G) = (Eg — 1)!- Vol (Ng N {a1 = 0})




Spanning tree polytope and its polar (relevant for sector decomposition):

Vr=T—Tece{l,-1}F
Ng=conv{Vr: T ST} c RFe
Ne= ) {53 3-vr<1}

TeST

The Hepp bound is the volume of the polar polytope
H(G) = (Eg — 1)!- Vol (Ng N {a1 = 0})

Facets of N¢/vertices of V¢ are indexed by subgraphs:
{y C G: v and G/ are 2-vertex connected}
Factorisation of the facets:
NeN{7-d=w} =N, x/\/’G/V

Roughly, N looks like a cube, and N¢ is a cross-polytope: very “spikey”
and all volume concentrated near the centre.



Multivariate version & canonical form

Now consider arbitrary indices:

(el;[l / X2~ 1dxe>

The dimension is fixed by w(G) = Y, ae —

D2,

max |><1 1

(D/2) - £(G) = 0.

Example
The flag formula generalizes to this case, e.g.

(a1 + a2 + a3)as

1
H 4:3 | = L x{

dijdodisaa

(a1 + a2 + as)as

al+az+a3—D/2

(a3 + ag)(a1 + a2)

at+a+ar—DJ2

az+as— D/2

}

v




Consider the Hepp bound #(G:; 3):
@ it is a rational function in 3
@ it has simple poles

@ at hyperplanes w(+y) = 0 for 1Pl subgraphs

Factorization of residues

Reio’H(G; 3) = H(y; ay)‘w(v):o “H(G/y: aG/'y)‘w(

(v G/v)=0

| E
T
\

Example: edge contraction

Res 4(G; 3) = H(G/ei 3c/e)

v

@ it is the volume of a polytope:
H(G;3) = (E—1)!- Vol (Mo + (3 1)) n{a =0})

= canonical form



The period of a graph can be written as

PO =N-2)! [ i F7)

YNZO[W(Y

where F(¥) is the projectively invariant function

—D/2
. % \N-2 A y-vr
F) = (N —=2)! /0 g d)\{ 2, o (2)7'\7Tmax)

TeST

The Hepp bound is precisely obtained by the approximation F < 1.

Within each tree sector (constant Tyax), the function F is log-concave.

= efficient sampling of log-concave distributions




@ There is a rational version of Feynman periods.
@ It captures identities and gives numeric estimates.
@ Volume of a polytope with factorizing residues.

@ Generalizes to matroids.

@ add kinematics

dimensional regularization
renormalization
tropical field theory

asymptotics

numerics for Feynman integrals

.




