

> Oleksandr Volynets

General

GDML

HepRep

OpenGL

OpenGL features

Visualization in MaGe/Geant4

Oleksandr Volynets

Max-Planck-Institute for Physics

MaGe Workshop 2010, Munich January 18, 2010

イロト イヨト イヨト

Oleksandr Volynets

Motivation

General command GDML

HepRep

OpenGL

OpenGL features

Visualization in MaGe/Geant4, or Ways to see what you do in MaGe/Geant4

Oleksandr Volynets

Max-Planck-Institute for Physics

MaGe Workshop 2010, Munich January 18, 2010

<ロト <回ト < 回ト < 回ト

- Oleksandr Volynets
- Motivation General commands
- HepRep
- OpenGL
- OpenGL features

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

• Motivation

< □ > < □ > < □ > < □ > < □ > .

E

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features • Motivation

• General visualization commands

E

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features • Motivation

• General visualization commands

• Examples of command sequences

イロト イヨト イヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

- Motivation
- General visualization commands
- Examples of command sequences
- More detailed information on:
 - GDML
 - $\bullet \ HepRep/HepRApp/Wired \\$
 - OpenGL
 - Extra features of OpenGL

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General commands GDML HepRep OpenGL OpenGL This presentation gives a basic information on how to visualize a detector and/or an experiment using the standard Geant features.

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General commands GDML HepRep OpenGL OpenGL features This presentation gives a basic information on how to visualize a detector and/or an experiment using the standard Geant features.

Why do we need this?

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features This presentation gives a basic information on how to visualize a detector and/or an experiment using the standard Geant features.

Why do we need this?

• To see (before event simulation) the detector, it's geometry and possible overlaps;

イロト イポト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features This presentation gives a basic information on how to visualize a detector and/or an experiment using the standard Geant features.

Why do we need this?

- To see (before event simulation) the detector, it's geometry and possible overlaps;
- To see (after the simulation is done) tracks, hits, energy deposits etc.

イロト イポト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features This presentation gives a basic information on how to visualize a detector and/or an experiment using the standard Geant features.

Why do we need this?

- To see (before event simulation) the detector, it's geometry and possible overlaps;
- To see (after the simulation is done) tracks, hits, energy deposits etc.
- Even for more interesting things (not really useful but nice). Later on this...

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command: GDML HepRep OpenGL OpenGL There are 8 ways to visualize (according to the Geant4 manual):

・ロト ・回ト ・ヨト ・ヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGl

OpenGL features There are 8 ways to visualize (according to the Geant4 manual):

OpenGL

🛛 Qt

- OpenInventor
- 4 HepRep
- 5 DAWN
- 6 VRML
- RayTracer
- ASCIITree
 ASCIITTREE
 ASCIITREE
 ASCIIT

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGl

OpenGL features There are 8 ways to visualize (according to the Geant4 manual):

- OpenGL
- 🛛 Qt
- OpenInventor
- 4 HepRep
- 6 DAWN
- 6 VRML
- 🕜 RayTracer
- B ASCIITree

and one as a separate tool (included into Geant4.9.2 but implemented in MaGe)

GDML + ROOT

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGl

OpenGL features There are 8 ways to visualize (according to the Geant4 manual):

OpenGL *

2 Qt

- OpenInventor
- 4 HepRep *
- 5 DAWN
- 6 VRML
- 🕜 RayTracer
- 8 ASCIITree *

and one as a separate tool (included into Geant4.9.2 but implemented in MaGe) $% \left({{\left[{{{\rm{G}}_{\rm{e}}} \right]}_{\rm{e}}} \right)$

- GDML + ROOT *
- * Covered in this presentation

イロト イポト イヨト イヨト

Visualization
in MaGe/Geant4
Oleksandr Volynets
General commands
GDML
OpenGL
OpenGL

< ロ > < 四 > < 回 > < 回 > < 回 > <

E

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features Visualization is done in *macro/command line* of MaGe after the detector was defined and the */run/initialize* command executed so Geant4 *command line* activated. Further steps are:

E

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features Visualization is done in *macro/command line* of MaGe after the detector was defined and the */run/initialize* command executed so Geant4 *command line* activated. Further steps are:

- Open a visualization driver, such as:
 - /vis/open HepRepFile [OGLIX, RayTracer]

< 17 b

- イヨト イヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features Visualization is done in *macro/command line* of MaGe after the detector was defined and the */run/initialize* command executed so Geant4 *command line* activated. Further steps are:

- Open a visualization driver, such as:
 - /vis/open HepRepFile [OGLIX, RayTracer]
- Add the detector geometry
 - /vis/drawVolume

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features Visualization is done in *macro/command line* of MaGe after the detector was defined and the */run/initialize* command executed so Geant4 *command line* activated. Further steps are:

- Open a visualization driver, such as:
 - /vis/open HepRepFile [OGLIX, RayTracer]
- Add the detector geometry
 - /vis/drawVolume
- If using an immediate viewer, such as OpenGL, set camera parameters and drawing style (wireframe/surface):
 - /vis/viewer/set/style wireframe
 - /vis/viewer/set/viewpointThetaPhi 70 20

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features Visualization is done in *macro/command line* of MaGe after the detector was defined and the */run/initialize* command executed so Geant4 *command line* activated. Further steps are:

- Open a visualization driver, such as:
 - /vis/open HepRepFile [OGLIX, RayTracer]
- Add the detector geometry
 - /vis/drawVolume
- If using an immediate viewer, such as OpenGL, set camera parameters and drawing style (wireframe/surface):
 - /vis/viewer/set/style wireframe
 - /vis/viewer/set/viewpointThetaPhi 70 20
- Declare what data should be added to the scene (default is to just add full set of detector volumes)

<ロト <回ト < 回ト < 回ト

- /vis/scene/add/trajectories
- /vis/scene/add/hits

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features

- Run simulation with appropriate options to store trajectory information:
 - /run/beamOn 1

・ロト ・回ト ・ヨト ・ヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features • Run simulation with appropriate options to store trajectory information:

• /run/beamOn 1

• Execute the visualization (done automatically with each /run/beamOn, but needed by some drivers if you want to output geometry without running an event):

/vis/viewer/flush

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features

- Run simulation with appropriate options to store trajectory information:
 - /run/beamOn 1
- Execute the visualization (done automatically with each /run/beamOn, but needed by some drivers if you want to output geometry without running an event):
 - /vis/viewer/flush
- $\star\,$ If using an external viewer, such as for HepRepFile:
 - import the .heprep file into HepRApp/Wired, set camera parameters, drawing style, etc., view the visualization

<ロト <回ト < 回ト < 回ト

Example Visualization Command Sequences

Visualization in MaGe/Geant4

> Oleksandr Volynets

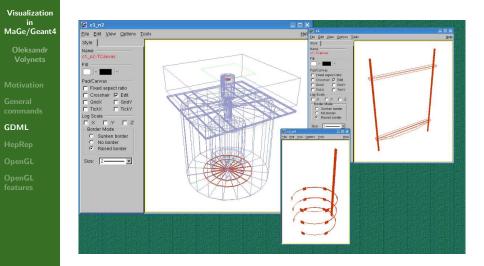
Motivation

General commands

GDML

HepRep

OpenGL


OpenGL features

- Visualize a detector in OpenGL (Linux or Mac)
 - /vis/open OGLIX
 - /vis/drawVolume
- Visualize trajectories and hits for 10 events using HepRep/HepRApp
 - /vis/open HepRepFile
 - /vis/drawVolume
 - /vis/scene/add/trajectories
 - /vis/scene/add/hits
 - /run/beamOn 10

- 4 回 ト 4 ヨ ト 4 ヨ ト

GDML (Geometry Description Markup Language)

・ロト ・回ト ・ヨト ・ヨト

GDML3.0 + ASCIITree + ROOT example sequence

Visualization in MaGe/Geant4

- Oleksandr Volynets
- Motivation

General commands

- GDML
- HepRep
- OpenGL

OpenGL features

- Open ASCIITree driver and create geometry tree
 - /vis/open ATree
 - /vis/ASCIITree/verbose 1
 - /vis/drawTree
- Set up GDML format: filename, output format and levels to modularize (see GDML manual):
 - /MG/geometry/GDML/outputName GerdaArray
 - /MG/geometry/GDML/outputFormat false
 - /MG/geometry/GDML/modularizeLevels 0 1 2
- Dump geometry to files
 - /MG/geometry/GDML/write
- Import geometry into ROOT
 - gSystem->Load("libGeom");
 - gSystem->Load("libGdml");
 - TGeoManager::Import("GerdaArray.gdml");
 - gGeoManager->GetTopVolume()->Draw();

GDML (Geometry Description Markup Language)

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

Advantages:

- Possibility to view each part of the detector separately e.g. in ROOT (using ROOT macro)
- You can write AND read the geometry to/from file (based on the XML language)

イロト イポト イヨト イヨト

GDML (Geometry Description Markup Language)

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features

Advantages:

- Possibility to view each part of the detector separately e.g. in ROOT (using ROOT macro)
- You can write AND read the geometry to/from file (based on the XML language)

Disadvantages:

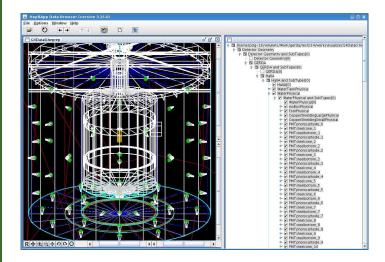
 GDML is included in Geant4.9.2 and later releases so there appeared number of incompatibilities in MaGe (way of reading/writing files was changed) - to be discussed during the Computing Session

イロト イヨト イヨト

• Creating geometry for older releases of GDML (version <=2.10) does not mean that it will be read by Geant4-GDML

Oleksandr Volynets

Motivation


command

GDML

HepRep

OpenGL

Open<mark>GL</mark> features

・ロト ・回ト ・ヨト ・ヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features It is fast and simple way to see the detector.

・ロト ・回ト ・ヨト ・ヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGL

OpenGL features It is fast and simple way to see the detector. Advantages:

- Flexible view of the detector, easy control: zoom/rotate using mouse;
- Many visual options;
- Easy manual creation of .eps files

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General commands

GDML

HepRep

OpenGI

OpenGL features It is fast and simple way to see the detector. Advantages:

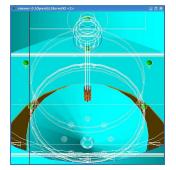
- Flexible view of the detector, easy control: zoom/rotate using mouse;
- Many visual options;
- Easy manual creation of .eps files

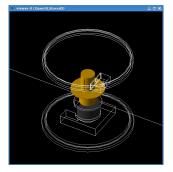
Disadvantages:

- Rather slow when rotating a complicated geometry;
- Not a better way of making high-quality pictures (i.e. for Posters or Technical Design Report)

<ロト <回ト < 回ト < 回ト

Oleksandr Volynets


Motivatio General command


GDML

HepRep

OpenGL

OpenGL features

・ロン ・四 と ・ ヨ と

E

OpenGL

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

Advantages:

- Can be viewed directly in Geant4;
- Uses a video graphic card so it is much faster way than the others.

イロト イヨト イヨト

OpenGL

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

Advantages:

- Can be viewed directly in Geant4;
- Uses a video graphic card so it is much faster way than the others.

Disadvantages(read as: "features"):

- You need a good graphic card and correctly installed driver for this!
- All movements of the detector/camera should be assigned in *macro/command line*, no mouse control available

<ロト <回ト < 回ト < 回ト

OpenGL

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

Advantages:

- Can be viewed directly in Geant4;
- Uses a video graphic card so it is much faster way than the others.
- Gives extra possibilities. See next slide...

Disadvantages(read as: "features"):

- You need a good graphic card and correctly installed driver for this!
- All movements of the detector/camera should be assigned in *macro/command line*, no mouse control available

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

Not really useful, but very fascinating. What can we see in motion:

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Not really useful, but very fascinating. What can we see in motion:

Rotating detector;

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Not really useful, but very fascinating. What can we see in motion:

- Rotating detector;
- Zooming detector;

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Not really useful, but very fascinating. What can we see in motion:

- Rotating detector;
- Zooming detector;
- Particle tracks;

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Not really useful, but very fascinating. What can we see in motion:

- Rotating detector;
- Zooming detector;
- Particle tracks;
- Particle showers

→ Ξ → → Ξ →

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Not really useful, but very fascinating. What can we see in motion:

- Rotating detector;
- Zooming detector;
- Particle tracks;
- Particle showers

See the movie about GERDA...

A D > A D >

→ E → < E →</p>

How to create a movie using OpenGL (OGLX)

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Here is my way described. As reported in geant4 presentations (see references) there is easier way to do this.

<ロト <回ト < 回ト < 回ト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Here is my way described. As reported in geant4 presentations (see references) there is easier way to do this.

- Put some loop to MaGe/Geant4 macro at the very end: *RunGerda.mac:*
 - /control/loop movie.loop phi 0 100 5 loop over $\phi = 0..100$ with step 5 degrees movie.loop:
 - /vis/viewer/set/viewpointThetaPhi 30 {phi}
 - /vis/ogl/printEPS

イロト イポト イヨト イヨト

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Here is my way described. As reported in geant4 presentations (see references) there is easier way to do this.

- Put some loop to MaGe/Geant4 macro at the very end: *RunGerda.mac:*
 - /control/loop movie.loop phi 0 100 5
 - loop over $\phi = 0..100$ with step 5 degrees

movie.loop:

- /vis/viewer/set/viewpointThetaPhi 30 {phi}
- /vis/ogl/printEPS
- Convert all .eps to .yuv files, create conversion macro for mpeg2encode and encode pictures to video file. See the reference for details.

<ロト <回ト < 回ト < 回ト

How to create a movie using OpenGL (OGLX)

Visualization in MaGe/Geant4	
Oleksandr Volynets	
	Have you seen "Time Warp" show on "Discovery Channel"?
GDML	
OpenGL	
OpenGL features	

How to create a movie using OpenGL (OGLX)

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Have you seen "Time Warp" show on "Discovery Channel"?

See slowed down motion of the particles (for free!)...

<ロト <回ト < 回ト < 回ト

▲口→ ▲圖→ ▲注→ ▲注→

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features • There are plenty of ways to visualize the detector, use the way you like

イロン 人間 とくほど 人間 と

Visualization in MaGe/Geant4

- Oleksandr Volynets
- Motivation
- General command
- GDML
- HepRep
- OpenGL
- OpenGL features

- There are plenty of ways to visualize the detector, use the way you like
- Each method has Advantages and Disadvantages

イロト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

- There are plenty of ways to visualize the detector, use the way you like
- Each method has Advantages and Disadvantages
- There are other also good ways not covered in this presentation (DAWN, RayTracerX etc.). Try them

イロト イポト イヨト イヨト

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features

- There are plenty of ways to visualize the detector, use the way you like
- Each method has Advantages and Disadvantages
- There are other also good ways not covered in this presentation (DAWN, RayTracerX etc.). Try them
- If you are a geek* you have much space to fulfil your needs. Just use your imagination

* http://en.wikipedia.org/wiki/Geek

イロト イポト イヨト イヨト

Acknowledgements

Visualization in MaGe/Geant4

> Oleksandr Volynets

Motivation

General command

GDML

HepRep

OpenGL

OpenGL features Thanks to Joseph Perl from SLAC (I took his presentations' materials while creating my talk)

イロト イヨト イヨト

References

Visualization in MaGe/Geant4

Oleksandr Volynets

Motivation

General

GDML

HepRep

OpenGL

OpenGL features

HepRApp Tutorial

 $\bullet \ http://geant4.slac.stanford.edu/Presentations/vis/G4HepRAppTutorial/G4HepRAppTutorial.html$

OpenGL Tutorial

 $\bullet \ http://geant4.slac.stanford.edu/Presentations/vis/G4OpenGLTutorial/G4OpenGLTutorial.html$

GDML manual

http://gdml.web.cern.ch/GDML/doc/GDMLmanual.pdf

Geant4 Visualization Commands

http://geant4.slac.stanford.edu/Presentations/vis/G4VisCommands.ppt (and .pdf)

Geant4 Advanced Visualization

http://geant4.slac.stanford.edu/Presentations/vis/G4VisAdvanced.ppt (and .pdf)

How to Make a Movie

http://geant4.slac.stanford.edu/Presentations/vis/HowToMakeAMovie.ppt (and .pdf)

Visualization Chapter of the Geant4 User's Guide for Application Developers

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/

Movies and other useful manuals and tutorials

http://geant4.slac.stanford.edu/Presentations/vis/

イロト イヨト イヨト