Pulse Shape Simulation for Segmented Detectors

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Lenz Max-Planck-Institute for Physics, Munich

Outline:

- Motivation
- Electric Field
- Charge Carrier Drift
- Evaluation I + II
- Summary and Outlook

MaGe Workshop January 18th-20th, 2010

Pulse Shape Simulation - Why?

samples of SSE and MSE are needed to understand efficiencies of PSA

- MSE can be easily extracted from data (MeV photon peaks)
- SSE can be also be extracted from data (Double Escape Peak)
- **BUT**: samples are not pure SSE or MSE
 - events are not homogeniously distributed throughout the detector

can be overcome

BUT takes long time to record samples

- Data should be supplemented by simulated pulses
 - PSS can give insights into crystal properties
 - helps reconstructing interaction positions

 $\sum_{k=1}^{N} \sum_{j=2615 \text{ keV}} \sum_{j=511 \text{ keV$

MaGe Workshop January 18th-20th, 2010

Basic Principle

- **energy deposit** ⇒ electrons holes created
- charges drift under influence of external E-Field
- drifting charges induce pulses on electrodes

- 1. simulate energy deposit using MaGe
- 2. group hits according to position bandwidth and sampling frequency
- 3. determine number of electron hole pairs
- 4. calculate E-Field inside detector
- 5. calculate drift of charge carriers
 - ⇒ calculate induced charges using weighting potentials
- 6. take into account electronics effect, i.e noise, bandwidth...

MaGe Workshop January 18th-20th, 2010 **Electric Field**

Solve Poisson-equation:

$$\nabla^2 \varphi(\vec{r}) = \frac{1}{(\epsilon_0 \cdot \epsilon_R)} \cdot \rho(\vec{r})$$

numerical procedure: Successive Overrelaxation (SOR)

numerical calculation works

- impurity density ρ dominates the electric field
- ρ changes with radius, height and maybe with azimuthal angle ϕ

MaGe Workshop January 18th-20th, 2010

Drift:

$$\vec{v}(\vec{r}) = \mu_{e,h} \vec{E}(\vec{r})$$

with $\mu_{e,h}$ depends on temperature, electric Field and **structure** of **germanium crystal**

Transverse anisotropy:

in direction (100), (110) and (111)
 μ_{e,h} parallel to E-Field otherwise not!

Longitudinal anisotropy:

- along crystal axes $~\langle 100\rangle,~\langle 110\rangle$ and $\langle 111\rangle$ $~\mu_{\rm e,h}$ has different magnitude
- Charge carrier drift in **any** direction can be computed using mobilities along (100) and (111) directions
- experimental data along axes exists
 ⇒ mobility can extracted along axes

Drift Parameters

Reference	Carrier	Direction	$\mu_0 \left[rac{\mathbf{cm}^2}{\mathbf{V}\cdot\mathbf{s}} ight]$	$E_0\left[\frac{V}{cm}\right]$	β	$\mu_n \left[rac{\mathbf{cm}^2}{\mathbf{V}\cdot\mathbf{s}} ight]$	$v = \frac{\mu_0 E}{\Gamma (\theta - 1/\theta)} - \mu_0 E$
Ref. [102]:	Electron	$\langle 111 \rangle$	42420	251	0.87	62	$\begin{bmatrix} 1 + (\underline{E}) \end{bmatrix}^{\mu}$
		$\langle 100 \rangle$	40180	493	0.72	589	$E = E_0$
Ref. [103]:	Hole	$\langle 111 \rangle$	107270	100	0.58	0	 [102]:Mihailescu <i>et al.</i> NIM A 447: 350
		$\langle 100 \rangle$	66333	181	0.744	0	[103]:Reggiani <i>et al.,</i> Phys. Rev. B 16: 2781
Ref. [104]:	Electron	$\langle 111 \rangle$	38536	538	0.641	510	
		$\langle 100 \rangle$	38609	511	0.805	-171	
	Hole	$\langle 111 \rangle$	61215	182	0.662	-	
		$\langle 100 \rangle$	61824	185	0.942	-	

MaGe Workshop January 18th-20th, 2010

Induced Charges

Shockley-Ramos Theorem:

$$Q_{induced}^{i}(t) = q_{e} \cdot \phi_{W}^{i}(\vec{r}(t)) + q_{h} \cdot \phi_{W}^{i}(\vec{r}'(t))$$

Weighting Potential:

calculated solving Laplace equation BC WP on electrode 1, otherwise 0 no analytical solution in 3D for 18 segments

Need numerical calculation (SOR)

Connection to MaGe

Virtual base classes:

MGVCrystalFields MGVFieldCalculation

MGVWaveformGenerator

— MGSORCrystalFields

MGSORFieldCalculation

— MGWFGenFromDrift

MaGe/waveform

MGVCrystalFields

//Set and access the MGCrystalData
inline void SetCrystalData(MGCrystalData* crystal){fCrystalData = crystal;};
inline const MGCrystalData* GetCrystalData() const {return fCrystalData;};

//Methods to save, load and draw(?) the electric and weighting fields
virtual void SaveFields() =0;
virtual void LoadFields() =0;
// virtual void DrawFields();

//Methods to access the electric and weighting field virtual CLHEP::Hep3Vector GetEField(CLHEP::Hep3Vector coordinates)const =0; virtual CLHEP::Hep3Vector GetWField(CLHEP::Hep3Vector coordinates, size_t segment) const =0; virtual double GetWPotential(CLHEP::Hep3Vector coordinates, size_t segment) const =0;

protected: MGCrystalData* fCrystalData;

Daniel Lenz
Max-Planck-Institue for Physics

MaGe Workshop January 18th-20th, 2010 MaGe/waveform

MGVFieldCalculation

MGVFieldCalculation(){;};

MGVFieldCalculation(MGVCrystalFields* crystalFields){fCrystalFields = crystalFields;}; // virtual ~MGVFieldCalculation();

//Methods to access MGVCrystalFields
inline void SetCrystalFields(MGVCrystalFields* crystalFields){fCrystalFields = crystalFields;};
inline MGVCrystalFields* GetCrystalFields(){return fCrystalFields;};

//Methods to calculate efield and weighting fields
virtual void CalculateFields() = 0;

protected: MGVCrystalFields* fCrystalFields; Open files, show how it works!

Files can be found in **MaGe/sandbox**

MaGe Workshop January 18th-20th, 2010

Evaluation I

Data:

- 18-fold seg. n-type HPGe detector
- 121.78 keV line from 75kBq collimated ¹⁵²Eu source
- rise time 10%-90% calculated:

Abt *et al.* NIM A 577: 574

Simulation:

- $\rho_{\rm t} = 0.70 \ 10^{10} \ {\rm cm^{-3}}$ $\rho_{\rm b} = 1.35 \ 10^{10} \ {\rm cm^{-3}}$
- single pulse on $\langle 110\rangle$ axis at r=37.5mm (max radius)
- $\langle 110 \rangle$ axis at 290 degree
- added 50 μ s decay time from preamp
- 37.5 MHz bandwidth of electronics

Evaluation I

- each data pulse fitted with simulated pulse; **3 parameter**: time offset, amplitude scale factor, time scale factor
- pulse with $\chi^2 > 200$ removed; background event
- Time scaling factor histogrammed and fitted with Gaussain

Evaluation I

MaGe Workshop January 18th-20th, 2010

Daniel Lenz Max-Planck-Institue for Physics

Evaluation II

Data:

- 19-fold seg. n-type HPGe detector
- 121.78 keV line from 42kBq collimated ¹⁵²Eu source
- all pulses added and normalized

Simulation:

- 121.78 keV photons collimated
- all pulses added and normalized
- added 50 μ s decay time from preamp
- several bandwidths simulated; χ^2 fit determined best bandwidth

MaGe Workshop January 18th-20th, 2010

70

Evaluation II

Vary impurity densities ρ :

lowest X^2 at $\rho = 0.6 \ 10^{10} \ \text{cm}^{-3}$

coincides with ρ calculated from depletion voltage 2250V

in the middle of given ρ range for that detector: $0.44\ 10^{10}\ cm^{-3}$ - $1.30\ 10^{10}\ cm^{-3}$

200

250

MaGe Workshop January 18th-20th, 2010

time scale factor core

1.1

0.9

0.8

0.7

0.6 0

50

100

150

Daniel Lenz Max-Planck-Institue for Physics

Evaluation II

core shape well matcheduncertainty not properly estimated?

shape for some preamps goodtransfer function needed!

MaGe Workshop January 18th-20th, 2010

- PSS needed to fully understand PSA
- Numerical simulation of electric field better than 1% Weighting potential calculated with same algorithm
- Drift implemented taking into account longitudinal and transverse anisotropy
- Correct impurity density can be extracted azimuthal change in rise time can hardly be explained by impurities
- Agreement of shape good after scaling of about 10% core 5% segments
- Replace electronics simulation by measured transfer function

Extras

MaGe Workshop January 18th-20th, 2010

- drift charges in fixed time intervall Δt
- start position equally spaced on outer/inner surface

MaGe Workshop								
January	18th-20th, 2010							