
Simulation and modeling of BEGe detectors

Matteo Agostini, Calin A. Ur,
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The BEGe geometry
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The BEGe detectors

The (LNGS) BEGe features

Electrical Characteristics:

Depletion voltage +3000 V
Operational bias voltage +3500 V
Integral nonlinearity < 0.05%

Physical Characteristics:

Active diameter 71 mm

Active area 3800 mm2

Thickness 32 mm
Distance from window 5 mm
Efficiency > 34%

Energy Resolution at 1332.5 keV:

FWHM (nominal) 1.752 keV
FWHM (measured) 1.607 ± 0.003 keV
FWTM 3.259 keV
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The simulation

The structure of the simulation

I. MC simulation

–> coordinates and energy of the hits

II. Signal formation and development

<– coordinate of each hit

–> electron and hole trajectories

–> the signal induced on the point size
electrode

III. DAQ simulations

<– energy and signal for each hit in an event

<– the Preamplifier Transfer Function (PTF)

–> each pulse is convolved with the PTF

–> all the pulses of an event are added up

–> the noise is added to the total pulse
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The simulation

The simulation design

step 0. Create a library of pulses:

0.1 divide the detector in cubic cell (1 mm × 1 mm × 1 mm)

and generate a pulse for each cell

0.2 convolve each pulse with the PTF

0.3 store all the pulses in a library

step 1. Run the MC simulation

step 2. For each hit compute the pulse as weighted average of the pulses stored in
the library

step 3. For each event compute the total pulse by adding up the pulse of each hit

step 4. Add the noise
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step 0. Create a library of pulses:

0.1 divide the detector in cubic cell (1 mm × 1 mm × 1 mm)
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step 1. Run the MC simulation

step 2. For each hit compute the pulse as weighted average of the pulses stored in
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step 3. For each event compute the total pulse by adding up the pulse of each hit
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MGS v 5r02 : Multi Geometry Simulation is a MATLAB software developed for
the AGATA project (http://www.iphc.cnrs.fr/-MGS-.html )
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The simulation

The simulation design

step 0. Create a library of pulses:

0.1 divide the detector in cubic cell (1 mm × 1 mm × 1 mm)

and generate a pulse for each cell <– MGS
0.2 convolve each pulse with the PTF

0.3 store all the pulses in a library

step 1. Run the MC simulation <– MaGe
step 2. For each hit compute the pulse as weighted average of the pulses stored in

the library

step 3. For each event compute the total pulse by adding up the pulse of each hit

step 4. Add the noise

MGS v 5r02 : Multi Geometry Simulation is a MATLAB software developed for
the AGATA project (http://www.iphc.cnrs.fr/-MGS-.html )

MaGe: BEGe geometry used munichteststand/GELNGSBEGeDetector.hh
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The simulation

MGS: simulation of the signal formation and development

Trajectory simulation

Fourth–order Runge–Kutta method (∆t = 1 ns):

r(t + ∆t) = r(t) + f (v(r(t)), ∆t)

where the velocity is computed by using the mobility
model of L. Mihailescu and B. Bruynell:

vh = µh(r, E) · E ve = µe (r, E) · E

Simulation of the Electric Field

SOR and relaxation method to solve the Poisson’s eq:

∇
2φ(r) = −

ρ(r)

ε
→ E(r) = −∇ (ϕ(r))

– cathode at 0 V, anode at 3500 V
– detector completely depleted: ρ(r) = eNA(r)

Signal computation

Shockley-Ramo Theorem:

Q(t) = −qφw (r(t))

where φw (r(t)) is the weighting potential
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SOR and relaxation method to solve the Poisson’s eq:

∇
2φ(r) = −

ρ(r)

ε
→ E(r) = −∇ (ϕ(r))

– cathode at 0 V, anode at 3500 V
– detector completely depleted: ρ(r) = eNA(r)

Signal computation

Shockley-Ramo Theorem:

Q(t) = −qφw (r(t))

where φw (r(t)) is the weighting potential

The weighting potential is defined as the electric
potential calculated when the considered
electrode is kept at a unit potential, all other
electrodes are grounded and all charges inside the
device are removed.
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Validation of the simulation

Validation of the MaGe simulation

–> Housing absorption
scanning with a collimated source of Am along a diameter and the side:
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–> Dead layer measurements (nominal dead layer 0.8 mm)
ratio between the counts in the peaks at 81 keV and at 356 keV of 133Ba:
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Validation of the simulation

Validation of the PSS

The validation was carried out by comparing directly the simulated and the
experimental signals:

241Am colimated source ⇒ well localized events close to the detector surface;

averaging up the experimental and simulated signals ⇒ reduction of noise
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Validation of the simulation

Validation of the PSS

The validation was carried out by comparing directly the simulated and the
experimental signals:

241Am colimated source ⇒ well localized events close to the detector surface;

averaging up the experimental and simulated signals ⇒ reduction of noise

The averaging algorithm steps:

1 the experimental signal (sampled
at 10 ns) is resampled at 1 ns
interpolating the original points
with the FADC transfer function;

2 the resampled signal is fitted with
the average in order to obtain the
best possible time alignment;

3 if the average rms is minor than
the threshold value, the
resampled and shifted signal is
accepted in the average.
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Validation of the simulation

Radial scanning

–> 241Am source –> 2 mm collimator –> 600 s acquisitions for each position
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The holes are dragged to the center of the detector and then drift to the p+ contact
with a common trajectory

⇒ pulse shape discrimination parameter A/E a depends on the final rising part only

which is largely independent of the position of interaction inside crystal

aA → max amplitude of the current pulse; E → total energy of the event
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Validation of the simulation

Circular Scanning

–> 241Am source –> 1 mm collimator –> 500 s acquisitions for each position

We study the rise time as a function of the angle.
–> To observe variations we used the rise time between 1% and 90%
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Although the experimental data show a behaviour coherent with the simulation, the
agreement is only qualitative.

⇒ the result is remarkable taking into account the problems related to the

identification of the time corresponding to the 1% of the maximum amplitude
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Conclusion

Conclusion

Results:

the simulations performed with the nominal geometry is in reasonable
quantitative agreement with the experimental data

the impact of detector parameters (i.e. geometry description, grid step, impurity
distribution, bias voltage, etc.) on the signal pulse shape has been studied and
the simulation accuracy could be improved.
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distribution, bias voltage, etc.) on the signal pulse shape has been studied and
the simulation accuracy could be improved.

Future works:

investigate the pulse shape discrimination performances of BEGe detectors by
using simulations:

compare PS discrimination performance of experimental data with the
simulation
study the impact of the detector parameters on pulse shape discrimination
performances and the robustness of A/E method
determine the depletion voltage and the best operational voltage

validate the simulation with a precise inner scanning of the detector

generate library for the Phase I detectors and study PSA detector
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Conclusion
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quantitative agreement with the experimental data

the impact of detector parameters (i.e. geometry description, grid step, impurity
distribution, bias voltage, etc.) on the signal pulse shape has been studied and
the simulation accuracy could be improved.

Future works:

investigate the pulse shape discrimination performances of BEGe detectors by
using simulations:

compare PS discrimination performance of experimental data with the
simulation
study the impact of the detector parameters on pulse shape discrimination
performances and the robustness of A/E method
determine the depletion voltage and the best operational voltage

validate the simulation with a precise inner scanning of the detector

generate library for the Phase I detectors and study PSA detector

–> We are writing a paper containing these results (March-April)

–> The beta version of the simulation software will be soon uploaded to the MaGe
repository.
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Backup slides
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Backup slides

DAQ systems
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Backup slides

HV scanning
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Backup slides

Characterization measurements - Linearity
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Backup slides

Characterization measurements - Resolution
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Backup slides

Characterization measurements - Preamplifier
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Backup slides

Characterization measurements - Preamplifier noise
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Backup slides

Characterization measurements - Preamplifier noise
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Backup slides

Validation of the MaGe simulation - Absorption
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Backup slides

Validation of the MaGe simulation - Barium spectrum
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Backup slides

Validation of the MaGe simulation - DL
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Backup slides

Mobility model
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Backup slides

Drift velocity
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How to compute the electric field in a semiconductor detector

Since a semiconductor detector can be considered as an electrostatic system,
the electric field can be computed by solving the following Maxwell’s equations
or, equivalently, by solving the Poisson’s equation:

∇ · E =
ρ

ε

∇× E = 0 ⇒ E = −∇φ

9

>

=

>

;

∇ · ∇φ = −
ρ

ε
⇒ ∇2φ = −

ρ

ε

To solve the Poisson’s equation ∇2φ = −ρ/ε and find the potential φ we need
to know:

the charge density distribution ρ

the boundary conditions (the value of φ on some surfaces):
φ0|Scathode

= Vcathode and φ0|Sanode
= Vanode
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The semiconductor junction

The semiconductor detector functioning is based on the properties of a
semiconductor junction:

Donor Ions
electrons
Acceptor Ions
holes

n-type p-type

rho

E
Charge density

Electric Field

e h

E
e h

I. Spontaneus diffusion

II. Recombination

III. Thermodinamic equilibrium

e h
The junction formation:

because of the difference in the concentration of
electrons and holes between the two materials,
there is an initial diffusion of the holes towards the
n-region and a similar diffusion of electrons
towards the p-region

the diffusing electrons fill up holes in the p-region
while the diffusing holes capture electrons in 
the n-side

the recombination creates a net charge
distribution inside the seminconducor. This
creates an electric field gradient across the
junction whitch halts the diffusion process.
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The charge distribution dependence of an external electric field

n-type p-type
rho

Charge density

Eext

Eext

Eext = 0

rho

rho
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The charge distribution dependence of the impurity concentrations

n-type p-type
rho

Charge density

rho

rho
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The charge distribution in a real detector

In a real semiconductor the junction is created between an heavily doped
semiconductor and a high-purity semiconductor:

n+ contact p-type

rho

e Nd

-e Na
0

Eext
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The assumptions

In all the potential computation we will assume that:

the detector is fully depleted
p-type detector ⇒ ρ = −eNd

n-type detector ⇒ ρ = eNa

the boundary conditions are:
the voltage on the electrodes is defined by the HV supply

⇒ φ|cathode = 0 V
⇒ φ|anode = 3000 V

the detector is enclosed in a vacuum chamber
⇒ φ|ext = 0 V
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The linear superposition principle – the potential

From the linear superposition principle the potential can be separated into two
contribution:

φ(r) = φ0(r) + φρ(r)

where:

φ0 is the potential calculated considering only the electrode potentials
(ρ(r) = 0 ∀r )

φρ is the potential obtained grounding all the electrodes

The linearity of the Maxwell’s equation allows for computing the Poisson’s
equation for each contribution and then add up all the contribution:

∇2φ0(r) = 0 with: φ0|Scathode
= Vcathode φ0|Sanode

= Vanode

∇2φρ(r) = −ρ(r)/ε with: φ0|Scathode
= 0 φ0|Sanode

= 0

where Sanode and Scathode are the boundary surface of the two electrodes.
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The linear superposition principle – the field

Similarly, since the electric field is determined by the linear relation E = −∇φ,
it can be divided into two components:

E(r) = E0(r) + Eρ(r)

where:

E0(r) = −∇φ0(r)

Eρ(r) = −∇φρ(r)
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How to solve the Poisson’s equation

The Poisson’s equation is solved analytically only in the simplest problem,
usually it is solved by using numerical methods. In our simulation we use two
algorithms which works on a grid:

The Successive Over Relaxation (SOR) method converges to a solution
replacing at each iteration the current approximated solution at a given
grid point by a weighted average of its nearest neighbour on the grid

the relaxation method converges by replacing at each iteration the
current approximated solution with its Taylor expansion computed for each
point on the grid.
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Comparison

φρ

Eρ

φ0

E0

φtot

Etot
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