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‣ Monte Carlo fully-differential 
event generation at higher-
orders (NNLO)

The Geneva method

‣ Resummation plays a key role 
in the defining the events in a 
physically sensible way

‣ Results at partonic level can 
be further evolved by 
different shower matching 
and hadronization models
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way of overcoming the problem is to adjust the free parameters of the smooth cone isolation

algorithm to reproduce the e↵ects of the fixed cone procedure so that a comparison is at

least feasible. A second viable possibility, which has been recently investigated in [10, 44],

is the introduction of a hybrid cone isolation procedure which is very similar in spirit to

the smooth cone isolation. In this case the theoretical calculation is initially carried out

using the smooth cone isolation with a small radius parameter Riso such that only a tiny

slice of phase space around the photon direction is removed. As second step, the fixed cone

isolation procedure with a larger radius R � Riso is applied to the events which passed

the smooth cone criterion. In other words one initially applies very loose smooth cone

isolation cuts which are then tightened by the fixed cone procedure. In this paper we use

both the smooth cone and the hybrid isolation procedures. The first method is used for the

comparison to the results obtained with the MATRIX code [26] in subsection 4.3, while the

second isolation requirement is instead used for the comparison to the LHC data in section

5. The precise values of the isolation parameters, the selection cuts and the set of parton

distribution functions (PDF) which are employed in our calculations will be specified in

the sections below.

3 Resummation in Soft-Collinear E↵ective Theory

The N -jettiness [25] resolution variable is used within the Geneva framework to discrimi-

nate between resolved emissions with di↵erent jet multiplicities. Given anM -particle phase

space point �M with M � N , it is defined as

TN (�M ) =
X

k

min
�
q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk

 
, (3.1)

where the sum over k runs over all QCD partons and where q̂i = ni = (1,~ni) are light-like

reference vectors parallel to the beam and jet directions. The limit TN ! 0 describes a

N -jet event, where the unresolved emissions can either be soft or collinear to the final state

jets or to the beams. This observation translates into a factorization formula [23] for the

TN spectrum in this limit. In the case of color singlet final state processes (such as Drell-

Yan, HV , diphoton production,. . . ) the relevant resolution variable which is resummed to

NNLL0 accuracy is the 0-jettiness (beam thrust). Starting from the general definition in

(3.1), the expression for 0-jettiness is considerably simplified [25]

T0 =
X

k

|~pkT | e
�|⌘k�Y | , (3.2)

where |~pkT | and ⌘k are the transverse momentum and the rapidity of the emission pk. The

0-jettiness cross section for small T0 obeys a factorization formula which has been derived

in [23, 24] originally for Drell-Yan, but it holds for any final state color singlet production

process

d�SCET

d�0dT0
=
X

ij

H��

ij
(Q2, t, µ)

Z
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)S

✓
T0 �

ta + tb
Q

,µ

◆
, (3.3)
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[Stewart, Tackmann,Waalewijn `09,`10] 

Resolution parameters for N extra emissions

‣ The key idea is the introducMon of a resoluMon variable  that measure the hardness of the 
-th emission in the  phase space.  

‣ For color singlet producMon one can have ,  , ,….  

‣ N-jeQness is a valid resoluMon variable: given an M-parMcle phase space point with  

‣ The limit        describes a N-jet event where the unresolved emissions  are collinear to 
the final state jets/iniMal state beams or soU 

‣ For color-singlet final states, it reduces  to 0-jeQness 

‣ When an extra jet is present 1-jeQness used for   

rN
N + 1 ΦN

r0 = qT p j
T kT-ness

M ≥ N

τN → 0

r1

N-jettiness as jet-resolution variable

I N-jettiness is a good resolution parameter. Global physical observable
with straightforward definitions for hadronic colliders, in terms of beams qa,b

and jet-directions qj

TN =
2

Q

X

k

min
�

q1 · pk, . . . , qN · pk

 
) TN =

2

Q

X

k

min
�

qa · pk, qb · pk, q1 · pk, . . . , qN · pk
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I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN ! 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N limits the activity outside the jets
Simone Alioli | GENEVA | DESY 3/6/2021 | page 6
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Resolution parameters for N extra emissions
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Resumming resolutions parameters not really a new idea, SMCs have been doing  it since 
the ‘80s with Sudakov factors 

Using resummation at higher orders has several  benefits:  systematically improvable 
(NLL,NNLL,N3LL,…), lowering theoretical uncertainty at each step. Including primed 
accuracy captures the exact singular behaviour at . 

The higher the accuracy the lower the cuts can be pushed without risking missing higher 
logarithms being numerically relevant. The lower the cut the smaller the nonsingular power 
corrections due to phase-space projections will affect the results differentially. 

δ(rN)

For NNLO event generation 
one needs at least NNLL’  + 

NNLO accuracy to control 
the full  singular 
contributions. 

r0

α2
s gg → HH

LHC 13 TeV

Resummation of resolution parameters
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Final GENEVA partonic formulae 
combine resummation and matching to 
fixed-order  

Resummed formulae need to be made 
more differential via splitting functions, 
capturing the singular behaviour of 
different resolution variables as best as 
they can. 

From resummation to event generation
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Figure 2: Comparison of the fixed-order, singular, and nonsingular distributions at

NNLO+NNLL0, both for T0 (left) and pH
T

(right). We show the singular and nonsin-

gular distributions both for the original and improved versions of the splitting function

implementation in Geneva.

mic behaviour of the NLO1 result, as it appears to miss a single logarithmic contribution

⇠ 1/pH
T
. This is implied by the fact that the improved nonsingular contribution converges

to a nonzero constant at low values of pH
T
. This must however be compared with the orig-

inal approach, Porig, where the divergent behaviour of the nonsingular plot suggests that

that implementation also fails to capture the logarithmic structure up to ⇠ ln2(pH
T
)/pH

T
.

We examine the e↵ects of the Pimpr implementation on the Drell-Yan process in App. A,

where we compare di↵erent Geneva results with the ATLAS experimental data.

3.2 Independent scale variations

In traditional implementations of fixed-order QCD calculations, a di↵erentiation is made

between the factorisation scale µF and the renormalisation scale µR. The former is associ-

ated with the scale of collinear factorisation, while the latter is introduced in dimensional

regularisation in order to render the strong coupling dimensionless.

To date, implementations of Geneva have assumed these scales to be equal. Doing

so facilitated the matching to the resummed calculation, where a sole “nonsingular” scale

µNS appears as the endpoint of the RGE running, typically taken to be a hard scale Q of

the problem. The two scales were then varied in a correlated fashion (“diagonal” in the

{µR, µF } space) when probing the higher order uncertainties. This approach, however,

can hinder a complete and thorough uncertainty estimation as it neglects those variations

– 15 –



Implemented processes

Method has been tested and validated with several color singlet production processes: 
 DY, ZZ, , VH, , ggH, ggHH, Higgs decays using both zero-jettiness and  

   

Wγ γγ qT
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Using the jet pT as resolution variable
GENEVA recently extended to jet veto resummation in [Gavardi et al. 2308.11577].  

Factorization most easily derived for cumulant of the cross-section. SCET II problem. 
Numerical derivative to get the spectrum. For hardest-jet we have 
   

Two loop Beam and Soft functions recently computed in [Abreu  et al. 2207.07037, 2204.02987] 

Focus on  with jet veto, in 4-flavor scheme to avoid top contaminations.  

Massless two-loop hard function taken from qqVVamp [Gehrmann et al.  1503.04812] 

Interface to SCETlib  [Tackmann et al.] allows to perform also resummation also for pT of the 
second jet at the cumulant level. Refactorization of soft sector into global soft, soft-coll and 
nonglobal contributions [Cal et al.]

W+W− → μ+νμe−ν̄e

[Banfi et al. hep-ph/0206076]
SIMONE ALIOLI  -  RINGBERG 9/5/2024



Resumming second jet resolution at NLL’ in GENEVA
Extension of the GENEVA approach to include resummation of  to NLL’ accuracyrcut

1

NLL’ accuracy of the second jet only maintained 
in presence of an hard first jet.  

Resummation formula not able to handle the 
 hierarchy, double resummation 

required there.  
r0 ∼ r1 ≪ μH

Now truly capturing the correct 
nonsingular behaviour when 
approaching the single-jet limit 
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 Validation of WW production
We include the resummation of the  
channel at NNLL’ and the  channel 
at NLL 

Jet veto resummation available in 
MCFM up to partial N3LL accuracy. 
Different treatment of uncertanties.

qq̄
gg

[Campbell et al. 2301.11768]

NNLO validation 
against MATRIX
[Grazzini et al. 1711.06631]
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 Showering

Inclusive quantities well-preserved by the shower, pT of the hardest jet is extremely 
sensitive to shower effects and gets mildly shifted. Few percent effect at 30 GeV.  

This is entirely due to FSR emissions (the shower splits the hardest jet above pT cut into 
2 jets below  pT cut). Placing constraints to avoid this preserves  pT1st but not physically 
motivated.   

Investigating resummation of different 1-jet resolution variable            (SCET II fact.)    𝒯kT
1



 Data comparison

Inclusion of  
channel necessary for  
agreement with data.  

Extension of  
channel to NLO+NLL’ 
ongoing 

gg

gg
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‣ Focus of color-singlet plus jet 
production 

‣ To remove energy-dependence and minimize only along directions 
’s must be frame-dependent Qi = 2Ei

‣ The choice of the ’s determines the frame in which the one-jettiness 
resummation is performed. Possible choices:                                                                    
LAB ,     UB -frame      and    CS-frame 

ρi

YVj = 0 YV = 0

Extension to processes with jets

SIMONE ALIOLI  -  RINGBERG 9/5/2024 ‣ No preliminary  jet clustering needed 
to find hard directions



Resummation of one-jettiness for Z+jet
FactorizaLon formula in the region   hard scale:𝒯1 ≪ Q

It is convenient to transform the soP, beam and jet funcLons in Laplace space to 
solve the RG equaLons, the factorizaLon formula is turn into a product.  
The color factorizes in soP and hard funcLons for 3 colored partons. 

,  s, Mℓ+ℓ−, MT,ℓ+ℓ− 𝒯0

We leP the choice of the frame free, keeping in mind the issues for GENEVA.
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Hard, soft, beam and jet functions
 Hard functions known analytically up to 2-loops.  [Gehrmann, Tancredi et al. `12, `22] 

From NNLL’ accuracy include the loop-squared ,  although 
numerically very small (per mille) 

gg → Zg

We compute the one-loop soft 
boundary terms as on-the-fly 
integrals using results in 

[JouZenus et al.  `11] 

Also studied for different jet 
measures in 

[Bertolini et al.  `17] 

 Beam and jet boundary conditions known up to 3-loop [Mistlberger et al.  `20] 
[Becher, Bell `10] [Gaunt et al. `14] 
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Hard, soft, beam and jet functions
The  2-loop contribution             newly calculated via SoftServe, interfaced to 
GENEVA in the form of an interpolation grid  

Approach validated comparing to the interpolation used in MCFM.

[Bell, Dehnadi, Morhmann, Rahn `23] 

[Campbell, Ellis, Mondini, Williams `18] 

Refined treatment reproduces leading power behavior at extreme 
angles, important for resummation >= NNLL’ and for N3LO 
singular contribution



 Hard evolution 
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 Hard evolution 
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 Beam, Jet and soft evolution  
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 N3LL resummed formula
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Nonsingular behavior
‣ Different  choices have different subleading power corrections𝒯1
‣ Investigated for one-jettiness subtraction at LL NLP [Boughezal, Isgro’, Petriello `20] 

‣ CS frame better than LAB across different 
cuts. UB frame delicate for IR safety.  

Dimensionless definition 

 τ1 = 2𝒯1/ M2
ℓ+ℓ− + q2

T

SIMONE ALIOLI  -  RINGBERG 9/5/2024
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Nonsingular behavior Dimensionless definition 

 τ1 = 2𝒯1/ M2
ℓ+ℓ− + q2

T

‣ Reduced differences when cutting on Z boson trans. momentum qT

SIMONE ALIOLI  -  MILANO 6/3/2024
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Resummed results
‣ Summing in quadrature profile scales variations and fixed-order ones
‣ Nice convergence and reduction of theoretical uncertainties
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Two dimensional profile scales
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Alternative profile scales: 1D and hybrid

SIMONE ALIOLI  -  RINGBERG 9/5/2024



‣ Nonsingular divergent for . Joint   resummation 
required to handle both divergencies  

𝒯0 → 0 (𝒯0, 𝒯1)

Matched results dσmatch.

dΦ1d𝒯1
=

dσ res.

dΦ1d𝒯1
+

dσf.o.

dΦ1d𝒯1
−

dσ res.exp.

dΦ1d𝒯1

‣  gives sizable contribution, important 
to include it for small values of    
𝒪(α3

s )
𝒯0
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Matched results

‣ Similarly large nonsingular contribution when cross 
section define by cut on Z transverse momentum in the 
limit   qT → 0
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Final uncertainty budget
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Conclusion and outlook

‣ The inclusion of state-of-the-art theoreLcal predicLons in SMC generators  
is mandatory to match the experimental precision and fully exploit the 
discovery potenLal of LHC measurements 

‣ GENEVA method allows for interfacing higher-order resummaLon of 
resoluLon variables in event generaLon with NNLO accuracy and parton 
showers.  

‣ Several color-singlet processes implements, using different resoluLon 
variables: N-jeaness, qT, jet veto… 

‣ Implemented one-jeaness resummaLon, prerequisite for Vj@NNLO+PS in 
GENEVA. Studied different  definiLons, performed resummaLon up to 
N3LL and matched to corresponding fixed-order.  Observed nice 
convergence and reducLon of theory unc.  in presence of an hard jet.

𝒯1

Thank you for your attention.
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Zero-jettiness factorization for top-quark pairs

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

FactorizaLon formula derived using SCET+HQET in the region where  are all 
hard scales.   [SA et al. 2111.03632] 

In case of boosted regime  one would instead need a modified two-jeaness  
[Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21]

Mtt̄ ∼ mt ∼ ̂s

Mtt̄ ≫ mt

Hard funcLons  
(color matrices)

SoP funcLons  
(color matrices)

Beam funcLons [Stewart, Tackmann, 
Waalewijn, [1002.2213], known up to N LO3

It is convenient to transform the soP and beam funcLons in Laplace space to solve the 
RG equaLons, the factorizaLon formula is turn into a product of (matrix) funcLons

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]
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Zero-jettiness resummation for top pairs
Resummed formula valid up to NNLL’ accuracy  

the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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where

and , ,  and Ls = ln(M2/μ2
s ) Lh = ln(M2/μ2

h) LB = ln(M2/μ2
B) ηtot = 2ηS + ηB + ηB′ 

the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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The final accuracy depends on the availability of the perturbaLve ingredients
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NNLL   is our best predicLon, it includes NNLO beam funcLons, all mixed NLO x NLO terms, NNLL evoluLon 
matrices, all NNLO soP logarithmic terms. ResummaLon is switched off via profile scales

′ a

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.

– 21 –

Resummed results
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Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.

– 22 –

Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Matched results

Matching to  @NLO improves the 
perturbaLve accuracy across the whole 

spectrum

t t̄ + j

Extension to full NNLL’ and to event generaLon is in progress.
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Interface with the parton shower

 measures the  hardness of the 
N+1-th emission 

‣ If shower ordered in , start from 
largest value allowed by N-jettiness 

‣ Let the shower evolve unconstrained. 
‣ At the end veto an event if after                  

shower emissions   
 and 

retry the whole shower.

𝒯N(ΦN+1)

kT

𝒯N(ΦN+M) > 𝒯N(ΦN + 1)

M ≥ 1

0-jet and 1-jet bins are treated differently: starting scale is resolution cutoff.

Ensures the relevant phase space is correctly covered to avoid spoiling the 
resummation accuracy for .  Shower accuracy for other observables is more 
delicate for dipole shower, effects numerically negligible .

𝒯

 Method rather independent from shower used: PYTHIA8, DIRE & SHERPA.

z
=

1

ln
T

c N
ln

k ?
(T

c N
)

Ve
to

Resummation

Shower

ln
Q

ln 1
µ𝒯N+M−1(ΦN+M) ≤ 𝒯N+M−2(ΦN+M) ≤ … ≤ 𝒯N(ΦN+M)

SIMONE ALIOLI  -  RINGBERG 9/5/2024



Interface with the parton shower

Effect of shower on  resolution variables different from what is resummed more marked,  
albeit shower accuracy is maintained. 
GENEVA framework allows this comparison for DY when resumming  or  

Best approach here would be joint  resummation, avoids need of splitting func. 
   

qT 𝒯0

(𝒯0, ⃗qT)
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