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Figure 2: Lund-diagram illustrations of the subleading-NC issue in the showers that we

consider. As a starting point we take a right (left)-moving quark (anti-quark), and gluon g1

emitted at the ⌘� ln p? coordinate shown in the big (“primary”) triangle. The phase-space

for emission of a further gluon from the qg1 dipole corresponds to the shaded area to the

right of g1 on the primary triangle, and the right-hand face of the “leaf” that comes out

of the plane; analogously the phase-space for emission from the q̄g1 dipole corresponds to

the shaded area of the primary triangle to the left of g1 and to the left-hand face of the

leaf. The colour factor associated with the phase-space region is indicated by the colour

of the shading: grey denotes CF , while blue denotes CA/2. The left-hand diagram shows

the correct pattern, the right-hand diagram shows the outcome of the Pythia and Dire

showers.

4. q[g1] ! qg2[g1] which is analogous to Eq. (3.9),
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The main message to retain from this analysis is that there is a region that has both

soft and collinear enhancements, for each of the two emissions, where instead of a C
2
F

colour factor, one obtains a CFCA/2 colour factor, i.e. an incorrect subleading Nc term.

This is illustrated in the Lund diagram of Fig. 2: panel (a) shows the correct assignment

of colour factors across phase-space for radiation below the scale of g1. The coloured

“leaf” that comes out of the plane represents the additional phase-space that opens up

following emission of g1, with a CA/2 colour factor associated with each of its two faces.

The restriction of the phase-space to that region is a consequence of angular ordering, as

discussed for example some time ago in Ref. [52]. Panel (b) shows the assignment that is

e↵ectively made in the case of the Pythia and Dire showers, with the coloured area (CA/2)

now extending into the primary Lund triangle.7 Since regions with simultaneous soft and

collinear enhancements (i.e. extended areas in the Lund diagram) tend to be associated

with leading double logarithms in distributions of common observables, one may expect

7Note that since we start with a qq̄ system, the primary plane emits only from the front face. For

an initial gg system, one might instead choose to represent emissions from both the front and rear faces,

reflecting the presence of two CA/2 dipoles.
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The Lund-plane: central tool for pQCD
[Banfi, Salam

, Zanderighi, JH
EP 

03 (2005) 073]
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Figure 1: The η–ln(kt/Q) plane for a single emission, together with a representation

(shaded area) of the region in kt and η over which the integrand of eq. (2.10b) is non

zero. The specific positions of the lines correspond to the case of an observable with

a1 = a2 ≡ a = 1 and b1 = 1, b2 = 3/2. For simplicity, the φ-dependence of the problem

has been neglected. The insets correspond to a magnification by a factor of order ln 1/v.

Further details are given in the text.

shaded region. If one makes the assumption that one can extend the soft and collinear

parametrisation (2.1) into the hard collinear region, then one finds, using eq. (2.6),
that for a given fixed z(!), the observable scales as ka!+b!

t . The scales associated with
the lateral corners of the shaded region are then

kt ∼ v1/(a!+b!)Q . (2.11)

In practice, in the hard collinear region, the observable V ({p̃}, k) may depart from

its soft and collinear parametrisation (2.1). Such a situation is illustrated in the
right-hand inset of fig. 1, which represents the true boundary of the shaded region
(solid line), V ({p̃}, k) = v, and the boundary that would be obtained based on

the soft-collinear parametrised form for V (dashed line). As long as the difference
between the true form of the observable and the parametrisation is just a non-zero

z(!)-dependent factor of order 1, then eq. (2.11) remains valid. Furthermore, when
evaluating eq. (2.10b), replacing the true observable V ({p̃}, k) with its parametrised
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Figure 1: Phase space for emissions on the (log 1
z , log R0

θ ) plane. In the strongly-ordered

limit, emissions above the dashed line (eq. (2.2)) are vetoed by the soft drop condition.

For β > 0, soft emissions are vetoed while much of the soft-collinear region is maintained.

For β = 0 (mMDT), both soft and soft-collinear emissions are vetoed. For β < 0, all

(two-prong) singularities are regulated by the soft drop procedure.

No relative scaling is assumed between energy fraction z and splitting angle θ for soft-

collinear modes. In these logarithmic coordinates, the emission probability is flat in the

soft-collinear limit. In the soft limit, the soft drop criteria reduces to

z > zcut

(
θ

R0

)β

⇒ log
1

z
< log

1

zcut
+ β log

R0

θ
. (2.2)

Thus, vetoed emissions lie above a straight line of slope β on the (log 1
z , log R0

θ ) plane, as

shown in figure 1.

For β > 0, collinear radiation always satisfies the soft drop condition, so a soft-drop

jet still contains all of its collinear radiation. The amount of soft-collinear radiation that

satisfies the soft drop condition depends on the relative scaling of the energy fraction z to

the angle θ. As β → 0, more of the soft-collinear radiation of the jet is removed, and in

the β = 0 (mMDT) limit, all soft-collinear radiation is removed. Therefore, we expect that

the coefficient of the double logarithms of observables like groomed jet mass (and C(α)
1 )

will be proportional to β, when β is small. Similarly, because the soft drop procedure does

not change the structure of collinear emissions, observables like the groomed jet energy are

IRC safe. Note that running β > 0 soft drop in tagging mode is not IRC safe, since a jet

would (would not) be tagged if it contained two (one) collinear particles.

In the strict β = 0 or mMDT limit, collinear radiation is only maintained if z > zcut.

Because soft-collinear radiation is vetoed, the resulting jet mass (and C(α)
1 ) distributions

will only exhibit single logarithms, as emphasized in refs. [59, 60]. Because the structure
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Definition of Lund-based observables

Anti-kt jet

Hemisphere in e+e- (kt, θ)

C/A reclustered jet
…

OUTPUTINPUT
ln(kt)

ln(1/θ)

kt,max

kt = pt,jetR

R Decreasing angle
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Definition of Lund-based observables

Anti-kt jet

Hemisphere in e+e-

C/A reclustered jet
…

OUTPUTINPUT
ln(kt)

ln(1/θ)

kt,max

kt = pt,jetR

R
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Two examples

ln(kt)

ln(1/θ)R

ρ(θ, kt) =
dN

d ln ktd ln(1/θ)
⟨N(kt > kt,cut)⟩

ln(kt)

Primary Lund-plane density Lund multiplicity

ln(1/θ)

kt,cut

R
[Lifson, Salam, Soyez JHEP 10 (2020) 170]

[Medves, ASO, Soyez, JHEP 10 (2022) 156, 
JHEP 04 (2023) 104]
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Figure 16: Four different slices of the primary LJP density of AK8 jets compared with pertur-
bation theory calculations by A. Lifson, G. P. Salam, G. Soyez [10]. The calculations include
all-orders resummation at next-to-leading logarithmic (NLL) accuracy matched to a next-to-
leading order (NLO) fixed-order calculation, and supplemented with nonperturbative (NP)
corrections, as described in the text. The band around the theory prediction represents the
uncertainty from variations of the renormalization scale uncertainty in the perturbative cal-
culation as well as uncertainties in the NP corrections. The gray band represents the total
experimental uncertainty. The upper two plots correspond to vertical slices of the LJP for fixed
ln(R/∆R) (large angles on upper-left, small angles on upper-right). The lower two plots cor-
respond to two different horizontal slices for fixed kT interval: the lower-left plot corresponds
to low-kT splittings and spans the full range in ln(R/∆R), whereas the lower-right plot corre-
sponds to high-kT splittings, which populate mostly wide-angle radiation.
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Lund-based observables: resummation vs data
Primary Lund-plane density

ln(R/ΔR)
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Figure 3: (left) h#Lundi and (right) h#Primary
Lund i are shown as a function of the emission :C requirement, :C ,cut. The

unfolded data are compared with several MC predictions in (a,b) an inclusive ?T bin above 300 GeV, (c,d) a ?T bin
between 500 GeV and 750 GeV and (e,f) a ?T bin between 1250 GeV and 4500 GeV. The h#Lundi distribution is
also compared with an analytic NLO+NNDL+NP prediction with additional non-perturbative corrections, depicted
as a solid line, provided by the authors of Ref. [33]. The total uncertainty on the data and the NLO+NNDL+NP
prediction are indicated as shaded regions. The middle panel shows a ratio of the predictions to the measured data,
and the bottom panel summarizes the various systematic uncertainties in each bin.
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Figure 3: (left) h#Lundi and (right) h#Primary
Lund i are shown as a function of the emission :C requirement, :C ,cut. The

unfolded data are compared with several MC predictions in (a,b) an inclusive ?T bin above 300 GeV, (c,d) a ?T bin
between 500 GeV and 750 GeV and (e,f) a ?T bin between 1250 GeV and 4500 GeV. The h#Lundi distribution is
also compared with an analytic NLO+NNDL+NP prediction with additional non-perturbative corrections, depicted
as a solid line, provided by the authors of Ref. [33]. The total uncertainty on the data and the NLO+NNDL+NP
prediction are indicated as shaded regions. The middle panel shows a ratio of the predictions to the measured data,
and the bottom panel summarizes the various systematic uncertainties in each bin.

10

kt,cut [GeV]

ρ(
k t,

Δ
R)

[CMS Collab arXiv:2312.16343] [ATLAS Collab arXiv:2402.13052]

State-of-the-art calculations describe data within 10-20% precision 
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Figure 12: Four different slices of the primary LJP density of AK8 jets compared with predic-
tions by PYTHIA8+VINCIA, PYTHIA8+DIRE, HERWIG7 with dipole shower, and SHERPA2. The
band represents the total experimental uncertainty. The upper two plots correspond to vertical
slices of the LJP for fixed ln(R/∆R) (large angles on upper-left, small angles on upper-right).
The lower two plots correspond to two different horizontal slices for fixed ln(kT/GeV): the
lower-left plot corresponds to low-kT splittings and spans the full range in ln(R/∆R), whereas
the lower-right plot corresponds to high-kT splittings, which populate mostly wide-angle ra-
diation. Statistical uncertainties in data and MC-simulated events are represented by vertical
bars, which are smaller than the markers in most of the bins.
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Lund-based observables: MCs vs data
Primary Lund-plane density
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[CMS Collab arXiv:2312.16343]
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Figure 2: A representative measured differential cross-section of (a,c,e) #Lund and (b,d,f) #Primary
Lund for an emission :C

requirement of (a,b) 1 GeV, (c,d) 10 GeV and (e,f) 50 GeV. The data are shown in an inclusive bin of jet rapidity
and a bin of jet ?T between either (a-d) 500-750 GeV or (e,f) 1000-1250 GeV. The unfolded data are compared
with several MC predictions, and the total uncertainty on the data is indicated by a shaded grey region. The middle
panel shows a ratio of the predictions to the measured data, and the bottom panel summarizes the various systematic
uncertainties in each bin.
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Figure 2: A representative measured differential cross-section of (a,c,e) #Lund and (b,d,f) #Primary
Lund for an emission :C

requirement of (a,b) 1 GeV, (c,d) 10 GeV and (e,f) 50 GeV. The data are shown in an inclusive bin of jet rapidity
and a bin of jet ?T between either (a-d) 500-750 GeV or (e,f) 1000-1250 GeV. The unfolded data are compared
with several MC predictions, and the total uncertainty on the data is indicated by a shaded grey region. The middle
panel shows a ratio of the predictions to the measured data, and the bottom panel summarizes the various systematic
uncertainties in each bin.
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Lund multiplicity
[ATLAS Collab arXiv:2402.13052]
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Lund-based observables: resummations vs parton showers3

non-trivial ⌘̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw ! K(�1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct next-to-leading-
order (NLO) normalisation for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1, and tests
were carried out using the method of Ref. [70].

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c. For the three
shower variants, the overhead factors ⌦ associated with
Eq. (3) are respectively taken equal to 3.1, 20 and 4,
independently of the dipole kinematics.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [71], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [72, 73] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [74] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [71] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

w/ double-softno double-soft

[Ferrario Ravasio et al. PRL 131 (2023) 16, 161906]See Alexander’s talk next
PanGlobal’s NNDL accuracy test

NNDL = 0

New application of resummation calculations: test of parton showers

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.161906
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Lund-based observables: resummations vs parton showers
[PanScales Collaboration, in preparation]See Alexander’s talk next

PanGlobal’s NNLL accuracy tests

Fractional EECs=
Thrust=

Broadening =

Fractional EECs=

Fractional EECs=
Durham jet rate=

PRELIMINARY
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[PanScales Collaboration, in preparation]See Alexander’s talk next

PanGlobal’s NNLL accuracy tests
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This talk: two new Lund-based observables

Mβ = max
i∈declust

kt,i

Q
e−β|ηi|

Sβ = ∑
i∈declust

kt,i

Q
e−β|ηi|

[Dasgupta et al. PRL 125 (2020) 5, 052002]

Hemisphere in e+e-
(kt, η)i

C/A reclustered jet

INPUT OUTPUT

Note: definition for colour singlet events in pp given in [van Beekveld, ASO et al. JHEP 11 (2022) 020]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052002


Reminiscent of soft-and-
collinear behaviour of 
event shapes 
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This talk: two new Lund-based observables

[See also Berger et al. PRD 68 (2003) 014012 ]

Hemisphere in e+e-
(kt, η)i

C/A reclustered jet

INPUT OUTPUT

Note: definition for colour singlet events in pp given in [van Beekveld, ASO et al. JHEP 11 (2022) 020]

[Dasgupta et al. PRL 125 (2020) 5, 052002]

M
β Sβ

[Banfi, Salam and Zanderighi JHEP 03 (2005) 073]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052002
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This talk: two new Lund-based observables

Mβ=0
NLL= y23

Sβ=1
NLL= T

[Dasgupta et al. PRL 125 (2020) 5, 052002]

Hemisphere in e+e-
(kt, η)i

C/A reclustered jet

INPUT OUTPUT

Note: definition for colour singlet events in pp given in [van Beekveld, ASO et al. JHEP 11 (2022) 020]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052002
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This talk: two new Lund-based observables [Dasgupta et al. PRL 125 (2020) 5, 052002]

Hemisphere in e+e-
(kt, η)i

C/A reclustered jet

INPUT OUTPUT

Note: definition for colour singlet events in pp given in [van Beekveld, ASO et al. JHEP 11 (2022) 020]

PanScales showers 
evolution variable

↔ v =
kt

Q
e−β|η|M

β Sβ

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052002
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Plan for this talk

Sneak peek at pheno with PanScales-Pythia interface

M
β Sβ NNLL resummation in e+e- collisions

Melissa van Beekveld (NIKHEF), Luca Buonocore (CERN), 
Basem El-Menoufi (Monash U.), Silvia Ferrario Ravasio, 
Pier Francesco Monni (CERN) and Gregory Soyez (IPhT)

Work in progress with:

M
β Sβ [PanScales Collab. arXiv:2312.13275]
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Revisiting NLL resummation (CAESAR approach)

exp( − ∫ [dk] |M(k) |2 )Σ(v) = ×
∞

∑
m=1

1
m!

m

∏
i=1

∫ [dki] |M(ki) |2 Θ(v − v(k1, …, km))

virtual corrections real emissions

[Banfi, Salam and Zanderighi JHEP 03 (2005) 073]
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Revisiting NLL resummation (CAESAR approach)

exp( − ∫ [dk] |M(k) |2 )Σ(v) = ×
∞

∑
m=1

1
m!

m

∏
i=1

∫ [dki] |M(ki) |2 Θ(v − v(k1, …, km))

virtual corrections real emissions

[Banfi, Salam and Zanderighi JHEP 03 (2005) 073]

Introduce a slicing parameter satisfying ϵ ≪ 1, ln 1/ϵ ≪ ln 1/v

resolved
∞

∑
m=1

1
m!

m

∏
i=1

∫ [dki] |M(ki) |2 =
∞

∑
n=1

1
n!

n

∏
i=1

∫ϵv
[dki] |M(ki) |2

×
∞

∑
k=0

1
k!

n+k

∏
i=n+1

∫
ϵv

[dki] |M(ki) |2 unresolved



rIRC safety implies that unresolved emissions don’t contribute to v
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Revisiting NLL resummation (CAESAR approach)

exp( − ∫ [dk] |M(k) |2 (1 − Θ(ϵv − v(k)))Σ(v) =

×
∞

∑
m=1

1
m!

m

∏
i=1

∫ϵv
[dki] |M(ki) |2 Θ(v − v(k1, …, km))

[Banfi, Salam and Zanderighi JHEP 03 (2005) 073]

virtual & unresolved

real emissions

At NLL, we can further expand the no-emission probability 

exp( − ∫ [dk] |M(k) |2 (1 − Θ(ϵv − v(k))) = exp( − R(v) − R′ ln 1/ϵ)



So that the cumulative cross-section can be written as 
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Revisiting NLL resummation (CAESAR approach)

exp( − ∫ [dk] |M(k) |2 [(1 − Θ(v − v(k))]) ×Σ(v) =

× e−R ln 1/ϵ
∞

∑
m=1

1
m!

m

∏
i=1

∫ϵv
[dki] |M(ki) |2 Θ(v − v(ki))

[Banfi, Salam and Zanderighi JHEP 03 (2005) 073]

Sudakov radiator

Transfer function 

Different log counting for Sudakov and Transfer function ( )ϵv < v(ki) < v

∫ [dk] |M(k) |2 ∼ ∫
dkt

kt
αCMW

s (kt)dzP(z)

[dki] |M(ki) |2 ∼ αs(kt)
dkt

kt
dη Ensemble of independent soft-

collinear gluons

CMW + hard-coll. splitting



So that the cumulative cross-section can be written as 
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e−Rsc(v)−Rhc(v)Σ(v) = × ℱNLL
Analytic Numerical (in general)

NLL results for Lund observables

[Dasgupta et al. PRL 125 (2020) 5, 052002]

e−RNLL(Mβ)

The NLL results for the Lund observables are:

×
e−γER′ 

Γ(1 + R′ )
e−RNLLΣ(Sβ) =

Σ(Mβ) =

[Banfi, Salam and Zanderighi JHEP 03 (2005) 073]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052002
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NNLL resummation (ARES approach) in a nutshell
[Banfi, El-Menoufi and Monni JHEP 01 (2019) 083][Banfi, McAslan, Monni, Zanderighi JHEP 05 (2015) 102]

ΣNNLL(v) = e−Rsc(v)−Rhc(v)

The interplay between real and virtual emissions notably more delicate

× [ℱNLL (1 +
αs(Q)

2π
H1 +

αs(Qhc)
π

C1)+
αs(Q)

π
δℱNNLL]

where, schematically, the physical origin of each NNLL correction is

e−Rsc(v) :

e−Rhc(v), C1 :

αphys
s = αs(1 +

2

∑
n=1

( αs

2π )
n
Kn) with K1 = KCMW

end-point of DGLAP splitting function

H1 :finite part of one-loop virtual corrections
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NNLL resummation (ARES approach) in a nutshell
[Banfi, El-Menoufi and Monni JHEP 01 (2019) 083][Banfi, McAslan, Monni, Zanderighi JHEP 05 (2015) 102]

ΣNNLL(v) = e−Rsc(v)−Rhc(v)

The interplay between real and virtual emissions notably more delicate

× [ℱNLL (1 +
αs(Q)

2π
H1 +

αs(Qhc)
π

C1)+
αs(Q)

π
δℱNNLL]

where, schematically, the physical origin of each NNLL correction is

δℱNNLL : one single emission with NLL-like kinematics

hard-collinear soft-coll, wide-
angle

soft, commensurate 
angle to other emissionδℱrec

δℱhc

δℱwa δℱcorrel, δℱclustδℱsc



We recycled a few ingredients from previous works
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Some remarks for Lund observables at NNLL

e−Rsc(v)−Rhc(v) (1 +
αs(Q)

2π
H1 +

αs(Qhc)
π

C1)analytic and computed 
in  [Banfi, El-Menoufi and Monni JHEP 01 (2019) 083]

ℱNLL analytic and computed in  [Dasgupta et al. PRL 125 (2020) 5, 052002]

δℱwa = 0

and computed the remaining NNLL corrections 

M
β Sβ M

β

δℱsc = 0
δℱhc = 0δℱclust, δℱcorrel
δℱrec analyticsemi-analytic, 

same for both

Sβ

δℱsc, δℱhc

analytic
δℱrec

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052002
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Cross-checks against Event2 and PanScales showers
Fixed-order check

Full agreement between analytic calculation and numerics

All-orders check

 0 = correct 𝒪(α2
s )

 0 = NNLL
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Plan for this talk

M
β Sβ NNLL resummation in e+e- collisions

Melissa van Beekveld (NIKHEF), Luca Buonocore (CERN), 
Basem El-Menoufi (Monash U.), Silvia Ferrario Ravasio, 
Pier Francesco Monni (CERN) and Gregory Soyez (IPhT)

Work in progress with:

M
β Sβ Sneak peek at pheno with PanScales-Pythia interface

[PanScales Collab. arXiv:2312.13275]
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Sensitivity to non-perturbative corrections @LEP energies

Significantly smaller hadronisation corrections for Mβ
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Sensitivity to non-perturbative corrections @FCs energies

Perturbative regime clearly extended when going to higher energies
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Comparison between showers @LEP energies

Physical value of  for PG0. Missing shower uncertainties αs(MZ)
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Comparison between showers @FCs energies

Similar results for other  values. Plots with uncertainties coming soonβ
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Summary and outlook

Mβ = max
i∈declust

kt,i

Q
e−β|ηi|Sβ = ∑

i∈declust

kt,i

Q
e−β|ηi|

• Presented NNLL resummation for two new Lund observables

•  has a particularly simple resummation structure and small sensitivity to 
non-perturbative corrections
Mβ

• Future directions: extension to hadron collisions (both globally and inside a 
jet), matching of the resummed predictions, systematic pheno study @LHC


