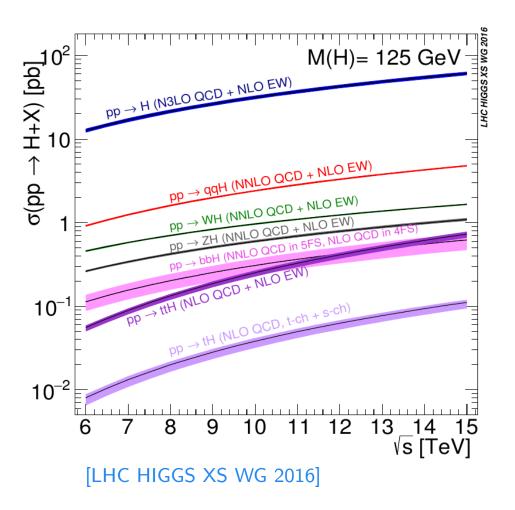
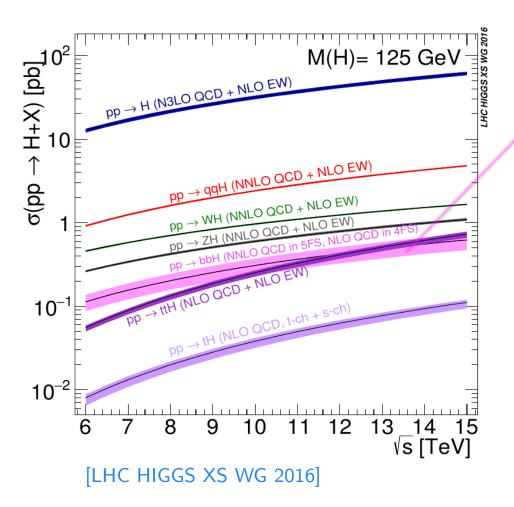
Higgs production through bottom annihilation in the 5FS with MiNNLO_{PS}

Aparna Sankar
In collaboration with
C. Biello, M. Wiesemann, G. Zanderighi
based on [EPJC 84, 479 (2024)]




MAX-PLANCK-INSTITUT
FÜR PHYSIK

Technische Universität München

2nd Workshop on Tools for High Precision LHC Simulations
Castle Ringberg | May 9, 2024



Although it is a subdominant channel, its cross section is large enough.

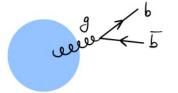
- Although it is a subdominant channel, its cross section is large enough.
- Direct probe of Higgs couplings to the bottom quark (y_b) in production
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM

- Although it is a subdominant channel, its cross section is large enough.
- Problem of Higgs couplings to the bottom quark (y_b) in production
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM
- bbH enters as a background in other Higgs searches (notably HH)

bbH is also interesting on how bottom quark is treated

bbH is also interesting on how bottom quark is treated

5 flavor scheme (5FS)



$$\begin{aligned} m_b &= 0 \\ f_b &\neq 0 \end{aligned}$$

4 flavor scheme (4FS)

$$\mathbf{m_b} \neq 0$$
$$\mathbf{f_b} = \mathbf{0}$$

bbH is also interesting on how bottom quark is treated

5 flavor scheme (5FS)

$$\begin{aligned} m_b &= 0 \\ f_b &\neq 0 \end{aligned}$$

4 flavor scheme (4FS)

$$\mathbf{m_b} \neq 0$$

 $\mathbf{f_b} = \mathbf{0}$

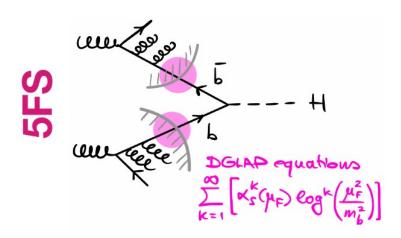
- Active parton inside the proton.
- Included in the parton distribution functions (PDFs) of the proton.
- It is taken to be massless except in the Yukawa coupling

bbH is also interesting on **how bottom quark is treated**

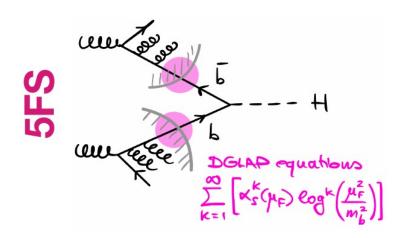
5 flavor scheme (5FS)

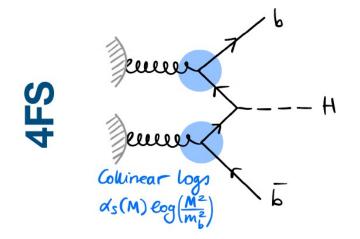
$$egin{aligned} m_b &= 0 \ f_b
eq 0 \end{aligned}$$

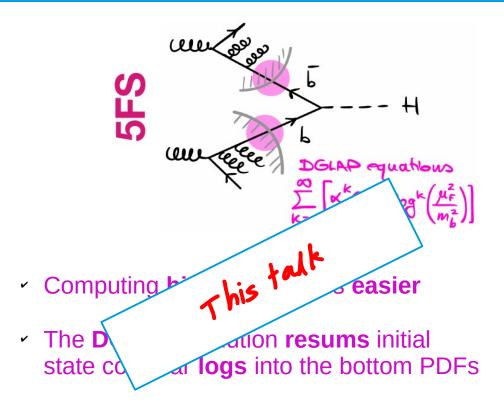
- Included in the parton distribution functions (PDFs) of the proton.
- It is taken to be massless except in the Yukawa coupling

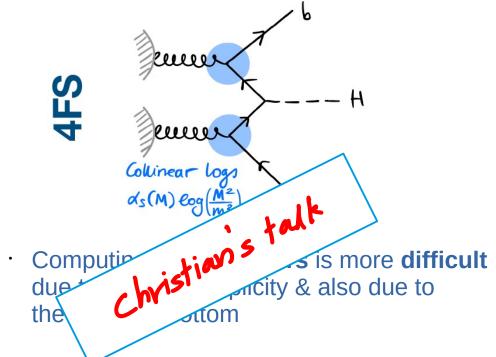


4 flavor scheme (4FS)

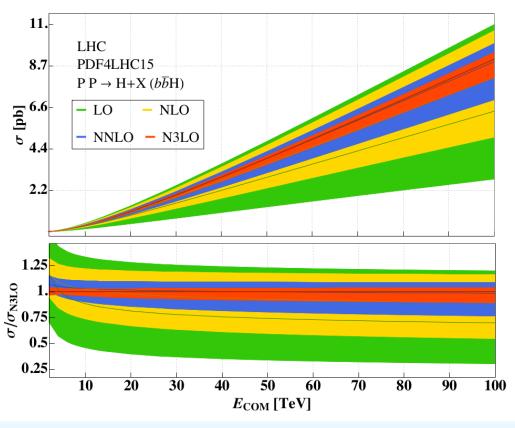

$$\mathbf{m_b} \neq 0$$
$$\mathbf{f_b} = \mathbf{0}$$


- Considered as a heavy quark
- The bottom quark's contribution is neglected in the PDFs.
- A massive bottom quark is produced from gluon splitting


- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglects power-suppressed terms of the $O(m_b/m_H)$


- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglects power-suppressed terms of the $O(m_b/m_H)$

- Computing **higher orders** is more **difficult** due to higher multiplicity & also due to the massive bottom
- It does not resum possibly large collinear logs
- Full kinematics of the massive bottom quark is taken into account

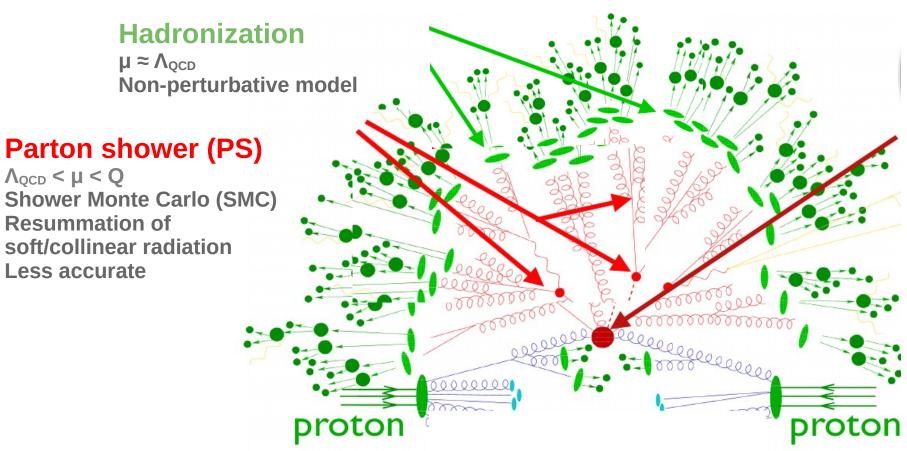

 Neglects power-suppressed terms of the O(m_b/m_H)

- It does not resum possibly large collinear logs
- Full kinematics of the massive bottom quark is taken into account

STATE OF THE ART N3LO QCD in 5FS

[Duhr, Dulat, Mistlberger (1904.09990)]

Substantial reduction of the residual scale uncertainty & good convergence of the perturbative

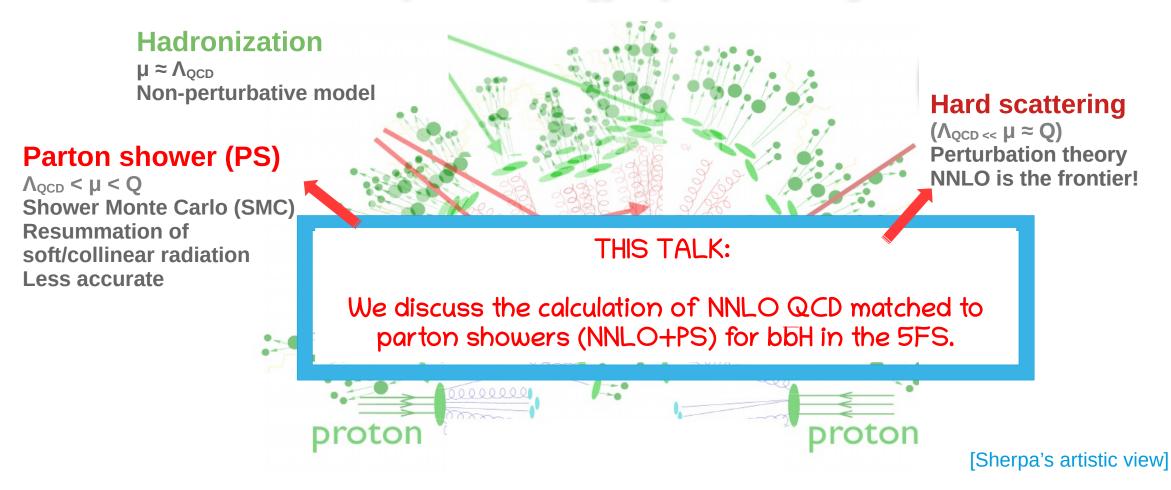

S [TeV]	σ_{bbH} [pb]	scale I	$PDF + \alpha_s$	m_b	N^3LO PDFs
	_				
13	0.542	$+3.0\% \\ -4.8\%$	$\pm 8.5\%$	+2.3% $-1.7%$	$\pm 2.5\%$

bbH simulation

Precise and realistic LHC phenomenology requires full-fledged event simulations.

bbH simulation

Precise and realistic LHC phenomenology requires full-fledged event simulations.


Hard scattering

 $(\Lambda_{QCD} \ll \mu \approx Q)$ Perturbation theory NNLO is the frontier!

[Sherpa's artistic view]

bbH simulation

Precise and realistic LHC phenomenology requires full-fledged event simulations.

NNLO+PS accuracy

- MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]
- **Geneva** [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- **UNNLOPS** [Höche, Prestel (1507.05325)]

NNLO+PS accuracy

 MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]

- Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- UNNLOPS [Höche, Prestel (1507.05325)]

MINNLO_{PS}

2->1: [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)]

[Monni, Re, Wiesemann (2006.04133)]

2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]

tt: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi

(2012.14267)

bbZ: [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Javier's talk

NNLO+PS accuracy

 MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]

- Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- UNNLOPS [Höche, Prestel (1507.05325)]

MINNLO_{PS}

2->1: [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)]

[Monni, Re, Wiesemann (2006.04133)]

2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]

tt: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi

(2012.14267)

bbZ: [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Javier's talk

- No computationally intense reweighting
- No unphysical merging scale
- Leading-log (LL) accuracy of the shower preserved
- Numerically efficient

- The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]
- > The **POWHEG** approach: we generate the **hardest radiation first** with **NLO** accuracy, then attaching a **parton shower** with **softer** emissions.

- The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]
- > The **POWHEG** approach: we generate the **hardest radiation first** with **NLO** accuracy, then attaching a **parton shower** with **softer** emissions.

Minnlo_{PS} in **POWHEG** framework: starts from a differential description of the production of the colour singlet and a jet ($pp \rightarrow F + J$) with phase space Φ_{FJ} .

POWHEG Sudakov form factor

$$d\sigma_{F}^{MiNNLO_{PS}} = d\Phi_{FJ} \bar{B}^{MiNNLO_{PS}} \times \left\{ \Delta_{pwg}(\Lambda_{pwg}) + \int d\Phi_{rad} \Delta_{pwg}(p_{T,rad}) \frac{R_{FJ}}{B_{FJ}} \right\}$$

Describes the generation of the 1st radiation

Describes the generation of the 2^{nd} radiation according to the **POWHEG** method above the infrared cutoff $\Lambda_{pwg} \sim 1$ GeV

Central ingredient of Minnlops

$$d\sigma = d\sigma^{sing} + d\sigma^{reg}$$

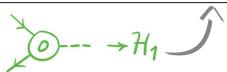
$$\bar{B}^{\text{MiNNLO}_{PS}} \sim e^{-\tilde{S}} \left\{ d\sigma_{FJ}^{(1)} (1 + \tilde{S}^{(1)}) + d\sigma_{FJ}^{(2)} + (D - D^{(1)} - D^{(2)}) \right\}$$

Central ingredient of Minnlops

$$d\sigma = d\sigma^{sing} + d\sigma^{reg}$$

$$\bar{B}^{MiNNLO_{PS}} \sim e^{-\tilde{S}} \left\{ d\sigma_{FJ}^{(1)} (1 + \tilde{S}^{(1)}) + d\sigma_{FJ}^{(2)} + (D - D^{(1)} - D^{(2)}) \right\}$$

Sudakov form factor


suppresses B at low p_T

$$\int_{p_t^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + \widetilde{B}(\alpha_s(q^2)) \right]$$

$$A(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi}\right)A^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^2A^{(2)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^3A^{(3)}$$

$$\left| \tilde{B}(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi} \right) B^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi} \right)^2 \tilde{B}^{(2)} \right|$$

$$\left| \tilde{B}^{(2)} = B^{(2)} + 2\zeta_3 (A^{(1)})^2 + 2\pi \beta_0 H^{(1)} \right|$$

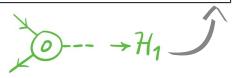
Central ingredient of Minnlops

MiNLO' structure

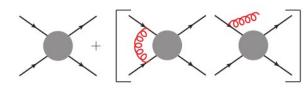
$$d\sigma = d\sigma^{sing} + d\sigma^{reg}$$

$$\bar{B}^{MiNNLO_{PS}} \sim e^{-\tilde{S}} \left\{ d\sigma_{FJ}^{(1)} (1 + \tilde{S}^{(1)}) + d\sigma_{FJ}^{(2)} + (D - D^{(1)} - D^{(2)}) \right\}$$

Sudakov form factor


suppresses \overline{B} at low p_T

$$\int_{p_r^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + \widetilde{B}(\alpha_s(q^2)) \right]$$


$$A(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi}\right) A^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^2 A^{(2)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^3 A^{(3)}$$

$$\left| \tilde{B}(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi} \right) B^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi} \right)^2 \tilde{B}^{(2)} \right|$$

$$\left| \tilde{B}^{(2)} = B^{(2)} + 2\zeta_3 (A^{(1)})^2 + 2\pi \beta_0 H^{(1)} \right|$$

FO differential cross sections

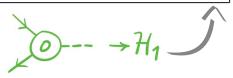
Central ingredient of Minnlops

MiNLO' structure

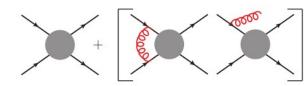
$$d\sigma = d\sigma^{sing} + d\sigma^{reg}$$

$$\bar{B}^{\text{MiNNLO}_{PS}} \sim e^{-\tilde{S}} \left\{ d\sigma_{FJ}^{(1)} (1 + \tilde{S}^{(1)}) + d\sigma_{FJ}^{(2)} + (D - D^{(1)} - D^{(2)}) \right\}$$

Sudakov form factor


suppresses \overline{B} at low p_T

$$\int_{p_r^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + \widetilde{B}(\alpha_s(q^2)) \right]$$


$$A(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi}\right) A^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^2 A^{(2)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^3 A^{(3)}$$

$$\left| \tilde{B}(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi} \right) B^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi} \right)^2 \tilde{B}^{(2)} \right|$$

$$\tilde{B}^{(2)} = B^{(2)} + 2\zeta_3 (A^{(1)})^2 + 2\pi \beta_0 H^{(1)}$$

FO differential cross sections

$$D(p_{\mathrm{T}}) = -\frac{\mathrm{d}\tilde{S}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}} \mathcal{L}(p_{\mathrm{T}}) + \frac{\mathrm{d}\mathcal{L}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}}$$

Additional terms to reach **NNLO** accuracy contains double virtual correction to pp -> F

Luminosity

Central ingredient of Minnlops

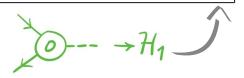
MiNLO' structure

$$d\sigma = d\sigma^{sing} + d\sigma^{reg}$$

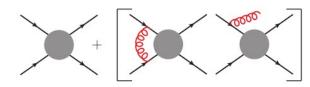
$$\bar{B}^{MiNNLO_{PS}} \sim e^{-\tilde{S}} \left\{ d\sigma_{FJ}^{(1)} (1 + \tilde{S}^{(1)}) + d\sigma_{FJ}^{(2)} + (D - D^{(1)} - D^{(2)}) \right\}$$

Luminosity

Sudakov form factor


suppresses \overline{B} at low p_T

$$\int_{p_r^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + \widetilde{B}(\alpha_s(q^2)) \right]$$


$$A(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi}\right) A^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^2 A^{(2)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^3 A^{(3)}$$

$$\left| \tilde{B}(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi} \right) B^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi} \right)^2 \tilde{B}^{(2)} \right|$$

$$\left| \tilde{B}^{(2)} = B^{(2)} + 2\zeta_3 (A^{(1)})^2 + 2\pi \beta_0 H^{(1)} \right|$$

FO differential cross sections

$$D(p_{\mathrm{T}}) = -\frac{\mathrm{d}\tilde{S}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}} \mathcal{L}(p_{\mathrm{T}}) + \frac{\mathrm{d}\mathcal{L}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}}$$

Additional terms to reach **NNLO** accuracy contains double virtual correction to pp -> F

- ► In the singular part : $\mu_R \sim \mu_F \sim p_T$
- > For the regular part, different scale choices can be performed:
 - ➤ Transverse momentum p_T (original choice)
 - Hard scale Q (FoatQ =1)

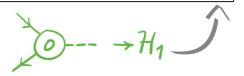
Central ingredient of Minnlops

MiNLO' structure

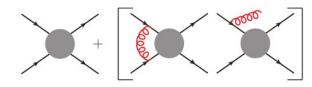
$$d\sigma = d\sigma^{sing} + d\sigma^{reg}$$

$$\bar{B}^{\text{MiNNLO}_{PS}} \sim e^{-\tilde{S}} \left\{ d\sigma_{FJ}^{(1)} (1 + \tilde{S}^{(1)}) + d\sigma_{FJ}^{(2)} + (D - D^{(1)} - D^{(2)}) \right\}$$

Sudakov form factor


suppresses \overline{B} at low p_T

$$\int_{p_r^2}^{Q^2} \frac{dq^2}{q^2} \left[A(\alpha_s(q^2)) \log \frac{Q^2}{q^2} + \widetilde{B}(\alpha_s(q^2)) \right]$$


$$A(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi}\right) A^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^2 A^{(2)} + \left(\frac{\alpha_{\rm S}}{2\pi}\right)^3 A^{(3)}$$

$$\left| \tilde{B}(\alpha_{\rm S}) = \left(\frac{\alpha_{\rm S}}{2\pi} \right) B^{(1)} + \left(\frac{\alpha_{\rm S}}{2\pi} \right)^2 \tilde{B}^{(2)} \right|$$

$$\left| \tilde{B}^{(2)} = B^{(2)} + 2\zeta_3 (A^{(1)})^2 + 2\pi \beta_0 H^{(1)} \right|$$

FO differential cross sections

$$D(p_{\mathrm{T}}) = -\frac{\mathrm{d}\tilde{S}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}} \mathcal{L}(p_{\mathrm{T}}) + \frac{\mathrm{d}\mathcal{L}(p_{\mathrm{T}})}{\mathrm{d}p_{\mathrm{T}}}$$

Luminosity

Additional terms to reach **NNLO** accuracy contains double virtual correction to pp -> F

- ► In the singular part : $\mu_R \sim \mu_F \sim p_T$
- > For the regular part, different scale choices can be performed:
 - ➤ Transverse momentum p_T (original choice)
 - > Hard scale Q (FoatQ =1)

Phenomenology of bbH - Setup

- Minnlo_{PS} $b\bar{b} \rightarrow H$ generator implemented within the Powheg-Box-Res framework
- Tree-level amplitudes of the HJ & HJJ: OpenLoops
- Virtual correction: analytic results

Phenomenology of bbH - Setup

- Minnlo_{PS} $b\bar{b} \rightarrow H$ generator implemented within the Powheg-Box-Res framework
- Tree-level amplitudes of the HJ & HJJ: OpenLoops
- Virtual correction: analytic results

Inputs:

- Center-of-mass energy: 13 TeV at LHC.
- Higgs boson mass (m_H) : **125 GeV**, Γ_H (decay width): 0 GeV.
- Default PDF: NNPDF40_nnlo_as_01180 with 5 active flavours.
- Central μ_R and μ_F scales set via **Minnlo**_{PS} method $[\mu_R \sim \mu_F \sim p_T]$.
- Yukawa coupling renormalized in $\overline{\text{MS}}$ scheme [Y_b(m_b=4.18 GeV) -> Y_b(m_H) = 2.79].

Scale Settings and Uncertainties:

- Scale uncertainities assessed through customary **7-point** μ_R and μ_F variation.
- Matching to Parton Shower:
 - Predictions matched to parton shower using Pythia8 with leading-log (LL) accuracy.

Exclusion of Effects:

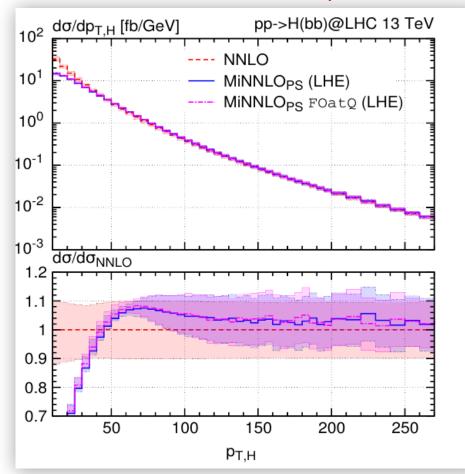
Hadronization, multi-parton interactions (MPI), and QED radiation effects are switched off.

Total inclusive cross section from **MiNLO**' & **MiNNLO**_{PS} predictions checked against fixed-order results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

[Harlander, Liebler, Mantler (1212.3249)]

Process	NLO (SusHi)	NNLO (SusHi)	MiNLO'	$ m MiNNLO_{PS}$	$rac{ ext{MiNNLO}_{ ext{PS}}}{ ext{(FOatQ 1)}}$
$b\bar{b} o H$	$0.646(0)_{-10.9\%}^{+10.4\%} \mathrm{pb}$	$0.518(2)_{-7.5\%}^{+7.2\%} \mathrm{pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \text{ pb}$	$0.509(8)^{+2.9\%}_{-5.3\%} \mathrm{pb}$	$0.508(4)^{+3.6\%}_{-4.3\%} \mathrm{pb}$

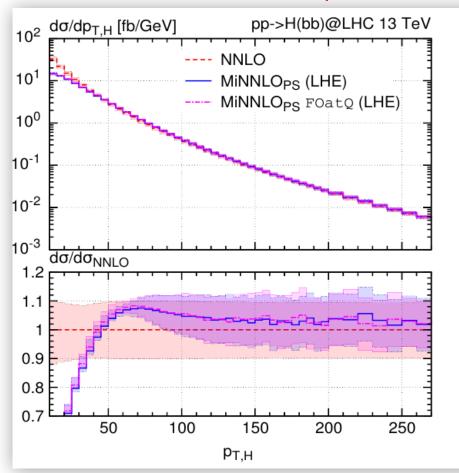
Total inclusive cross section from **MiNLO**' & **MiNNLO**_{PS} predictions checked against fixed-order results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]


[Harlander, Liebler, Mantler (1212.3249)]

Process	NLO (SusHi)	NNLO (SusHi)	MiNLO'	$ m MiNNLO_{PS}$	$egin{array}{c} ext{MINNLO}_{ ext{PS}} \ ext{(FOatQ 1)} \end{array}$
$b\bar{b} o H$	$0.646(0)^{+10.4\%}_{-10.9\%} \mathrm{pb}$	$0.518(2)_{-7.5\%}^{+7.2\%} \mathrm{pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \text{ pb}$	$0.509(8)^{+2.9\%}_{-5.3\%} \mathrm{pb}$	$0.508(4)_{-4.3\%}^{+3.6\%} \text{pb}$

- NNLO QCD corrections reduce cross section by > 10%
- Scale uncertainities significantly reduced with NNLO QCD corrections
- > Our Minnlops predictions are in agreement with NNLO QCD cross section within quoted uncertainties

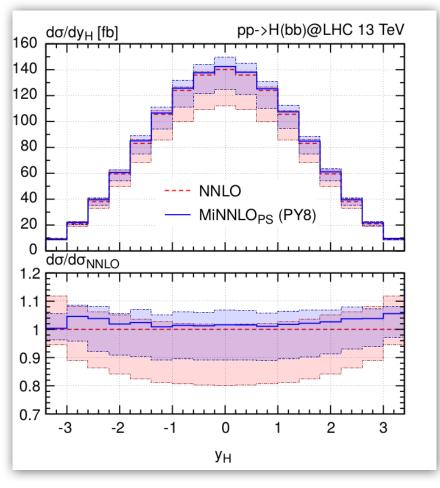
Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)


Les Houches level (LHE)

NNLO [Harlander, Tripathi, Wiesemann (1403.7196)]

Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

Les Houches level (LHE)



- Full agreement in large p_{T,H} regime with fixed-order predictions within quoted uncertainities
- Minnlo_{Ps} results with and without the FoatQ setting are very close
- Fixed-order calculations diverge for $p_{T,H} \rightarrow 0$ Minnlo_{PS} prediction remains finite

NNLO [Harlander, Tripathi, Wiesemann (1403.7196)]

Rapidity distribution of the Higgs boson (y_H)

PY8 level

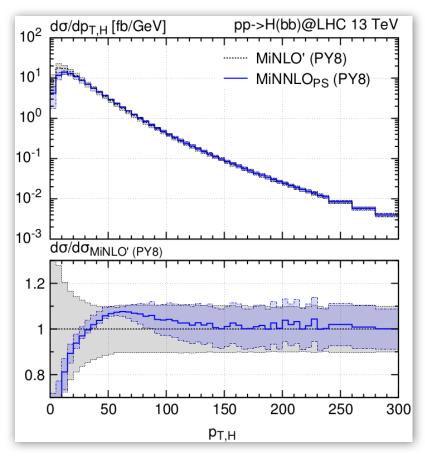


CT14nnlo_as_0118

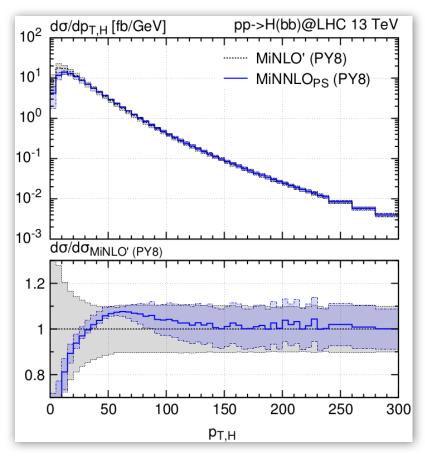
VNLO [Mondini, Williams (2102.05487)]

Rapidity distribution of the Higgs boson (y_H)

PY8 level

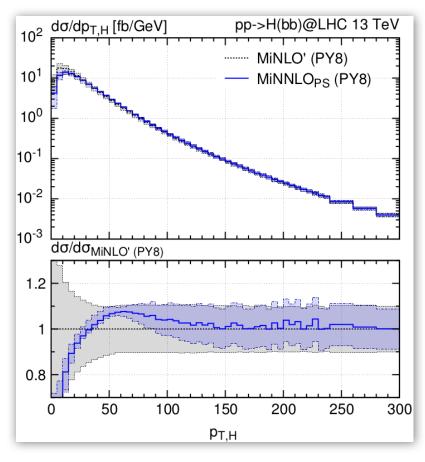


CT14nnlo_as_0118

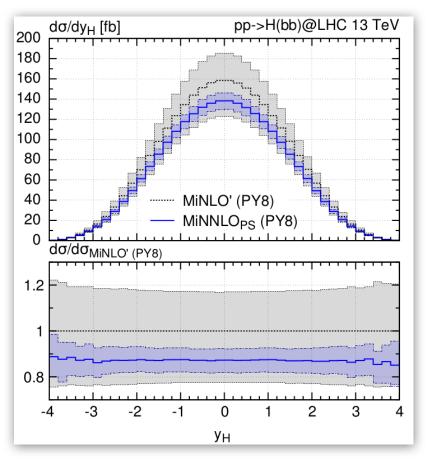

- A good agreement, both in terms of normalization and in terms of shape, between the two central predictions.
- The **bands** of **Minnlo**_{PS} result are **more symmetric** & slightly **smaller** than the **NNLO** ones.

NNLO [Mondini, Williams (2102.05487)]

Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

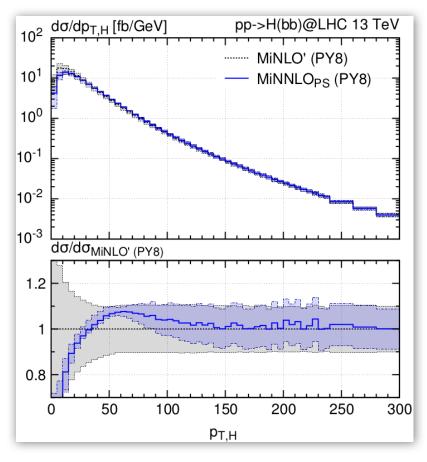


Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

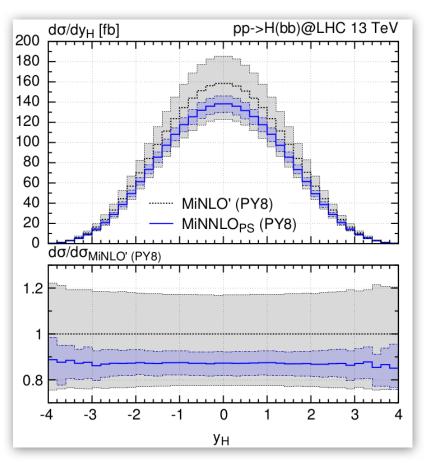


- At small p_T, Minnlo_{PS}
 significantly dampens
 distributions, reduces scale
 uncertainties.
- At large p_T, Minlo' &
 Minnlo_{PS} predictions coincide,
 both NLO accurate.

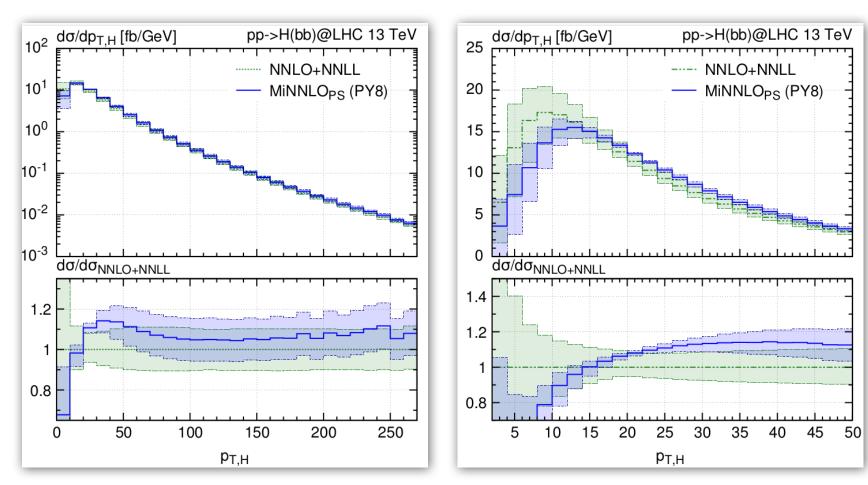
Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

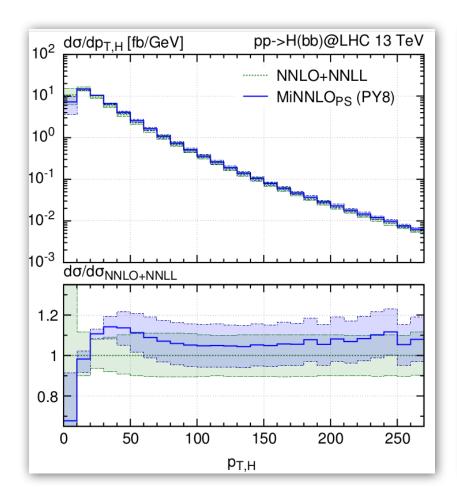


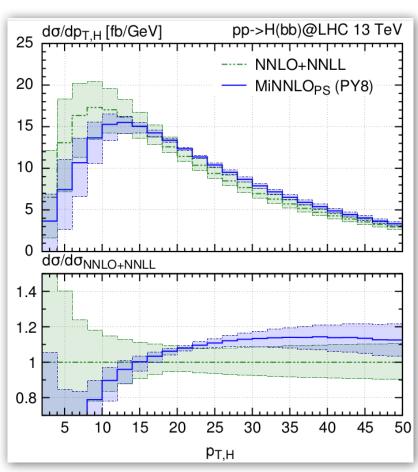
Rapidity distribution of the Higgs (y_H)



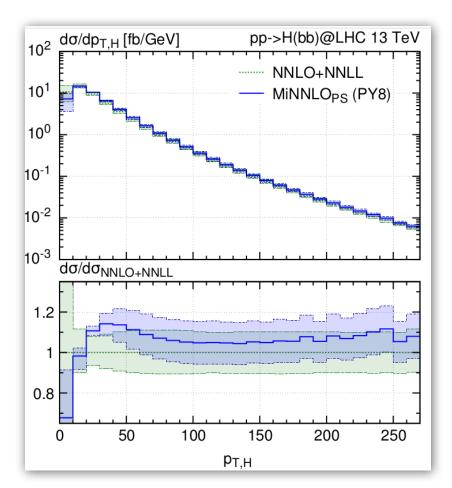
- At small p_T, Minnlo_{PS}
 significantly dampens
 distributions, reduces scale
 uncertainties.
- At large p_T, Minlo' & Minnlo_{PS} predictions coincide, both NLO accurate.

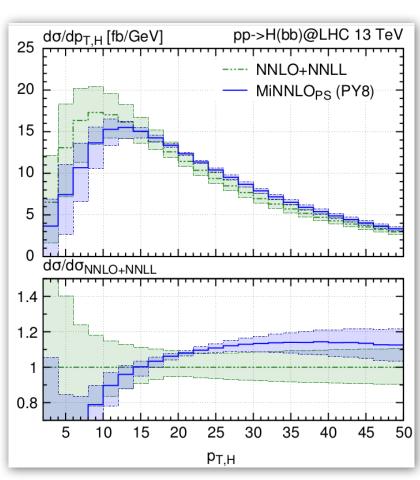

Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)


Rapidity distribution of the Higgs (y_H)



- ✓ At small p_T, Minnlo_{PS}
 significantly dampens
 distributions, reduces scale
 uncertainties.
- At large p_T, Minlo' &
 Minnlo_{PS} predictions coincide,
 both NLO accurate.
- y_H distribution: Minnlo_{PS} introduces a flat 12% negative correction, reduces scale uncertainties.


NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]



- At large p_{T,H}: Minnlo_{PS} shifted 10% up, well within the given scaleuncertainty bands.
- > At small p_{T,H}:
 slightly worsen the agreement.
 Minnlo_{PS} uncertainities are
 underestimated.

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

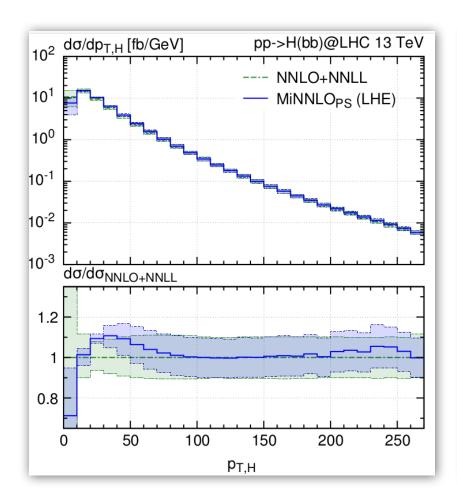
- At large p_{T,H}: Minnlo_{PS} shifted 10% up, well within the given scaleuncertainty bands.
- At small p_{T,H}: slightly worsen the agreement. Minnlo_{PS} uncertainities are underestimated.
- Massless approximation misses potentially relevant mass effects at small p_T, need to combine with massive 4FS calculation.

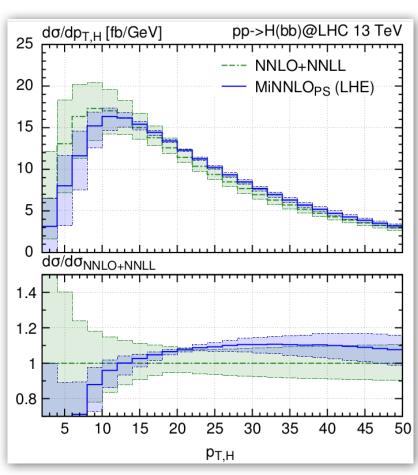
NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

Summary & Outlook

- First presentation of NNLO+PS computation for $b\bar{b} \to H$ (5FS) production at the LHC by using MiNNLO_{PS} method.
- Extensive validation against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > Initial step towards a complete NNLO+PS description of bbH production.
- Future directions include the completion of 4FS bbH with massive bottom quarks and the combination of full 4FS-5FS at NNLO+PS accuracy.

09/05/24

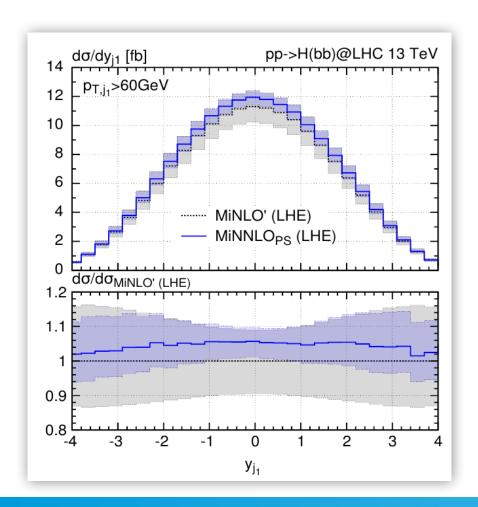

Summary & Outlook


- First presentation of NNLO+PS computation for $b\bar{b} \to H$ (5FS) production at the LHC by using MiNNLO_{PS} method.
- Extensive validation against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- > Initial step towards a complete NNLO+PS description of bbH production.
- Future directions include the completion of 4FS bbH with massive bottom quarks and the combination of full 4FS-5FS at NNLO+PS accuracy.

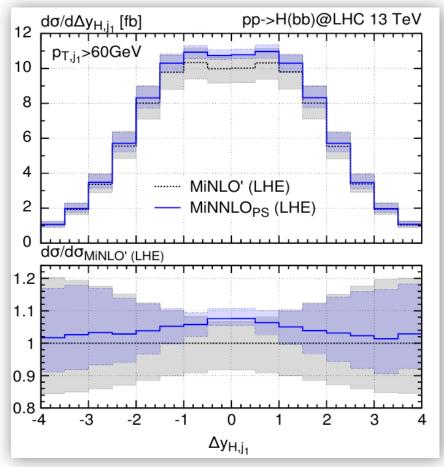
09/05/24

Backup slides

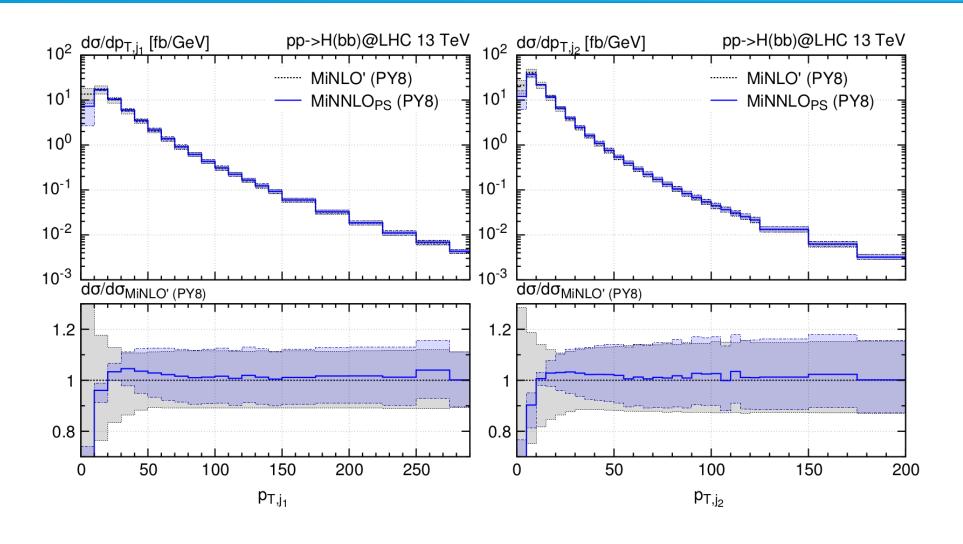
Les Houches level (LHE)


At high $p_{T,H}$: they coincide again

At small $p_{T,H}$: Acceptable agreement


NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)]

47


Rapidity distribution of the leading jet (y_{j1})

Rapidity difference between the Higgs boson & the leading jet $(\Delta y_{H,j1})$

- Very similar shapes for MiNLO' & MiNNLO_{PS} results
- MiNLO' & MiNNLO_{PS}:
 fully consistent within
 the quoted scale
 uncertainties

FONLL

FONLL matches the flavour schemes

$$\sigma^{FONNL} = \sigma^{4FS} + \sigma^{5FS}$$
 – double couting.

For a consistent subtraction, we have to express the two cross-sections in terms of the same α_s and PDFs.

Currently, the flavour matching for bbH is performed at

$$FONNL_C := N^3LO_{5FS} \oplus NLO_{4FS}$$
.