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Outline

▶ Power corrections in collider processes

▶ Renormalons and linear power corrections

▶ Massless partons

▶ Massive partons

▶ e+e− annihilation: shape-variables in the 3-jet region.

▶ Fits to e+e− data.
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Power corrections for collider processes

▶ Little is known about power corrections in QCD processes.

▶ Some simpler processes admit an OPE (the total cross section
in e+e− annihilation and similar processes, DIS-like processes,
B meson decays ...) so that power corrections can be
parametrized.

▶ For the complex collider processes one worries about the
presence of linear power corrections, i.e. corrections of the
order of Λ/Q, since these could be at the percent level, that is
the accuracy one is aiming for at the HL LHC.

▶ One instrument for the investigation of linear power correction
is the study of renormalons in the large b0 approximation.
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitude of the form∫ m

0

dkp αS(k
2) =

∫ m

0

dkp 1

b0 log(k2/Λ2)

=

∫ m

0

dkp αS(m
2)

1 + b0αS(m2) log k2

m2

= αS(m
2)

∞∑
n=0

(2b0αS(m
2))n

∫ m

0

dkp logn
m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.

▶ Minimal term at nmin ≈ 1
2pb0αS (m2)

.

▶ Size of minimal term: mpαS(m
2)
√
2πnmine

−nmin ≈ Λp.
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Large-nf all-order result

Given an (IR safe) observable O, we introduce the notation

▶ ΦB , phase space;

▶ Φg , phase space for the emission of one massive gluon with
mass λ,

▶ Φqq̄, phase space for the emission of a qq̄ pair

the all-order result can be expressed in terms of

▶ σB(ΦB), the differential cross section for the Born process;

▶ σv (λ,ΦB), the virtual correction to the Born process due to
the exchange of a gluon of mass λ;

▶ The real cross section σg∗(λ,Φg∗), obtained by adding one
massive gluon to the Born final state;

▶ The real cross section σqq̄(Φqq̄), obtained by adding a qq̄
pair, produced by a massless gluon, to the Born final state;
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Large-nf all-order result

Defining:

TO(λ) =

result for a gluon with mass λ︷ ︸︸ ︷
VO(λ) + RO(λ) +

Seymour,P.N.1995︷ ︸︸ ︷
∆O(λ) ,

VO(λ) =

∫
dΦb σ

(1)
v (λ2,Φb)O(Φb),

RO(λ) =

∫
dΦg∗ σ

(1)
g∗ (λ2,Φg∗)O(Φg∗),

∆O(λ) =
3πλ2

αSTF

∫
dΦqq̄Rqq̄(Φqq̄)δ(m

2
qq̄ − λ2) [O(Φqq̄)− O(Φg∗)]

The ∆ term vanishes if the observable is totally inclusive in the
radiated partons.

It turns out that a linear term in λ in the expansion of T (λ)
around zero is associated with linear renormalons.
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Large-nf all-order result

The all-order result is given by

⟨O⟩ = BO −
∫

dλ
dTO(λ)

dλ

1

αS

Beneke,98︷ ︸︸ ︷[
1

πb0
arctan

πb0αS

1 + b0αS log λ2/µ2
C

]
︸ ︷︷ ︸

αs,eff(λ)/αS

It is easy to show that a linear λ term in TO(λ) leads to a factorial
growth related to a linear IR renormalon. In fact∫

dλ

[
1

π
arctan

πb0αS

1 + b0αS log λ2/µ2
C

]
=

1

π
P

∫ ∞

0
dt

exp
(
− t

2b0αS

)
1− t

− exp

(
− 1

2b0αS

)
+ terms analytic in αS . (1)
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Large-nf all-order result

▶ We have a well-defined procedure for the computation of the
T function..

▶ Can be computed semi-numerically. This approach has been
followed in
▶ Ferrario Ravasio, Oleari, P.N.,2019 for studies related to the

top mass measurements.
▶ Ferrario Ravasio, Limatola, P.N.,2021 for showing the absence

of linear corrections to the pT spectrum of the Z in hadronic
collisions.

Gavin Salam had often shown an argument in favour of the
presence of linear power corrections to the inclusive pT spectrum
of the Z boson, based upon the fact that the soft radiation
associated to this process is not azimuthally symmetric. Our
attemt to actually compute such an effect in a model theory gave
negative results.
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It is however difficult, numerically, to show the absence of a
correction, especially in this case where the cancellation of
soft-collinear divergence between the virtual (computed
analytically) and real (computed numerically) is involved.
Analytic results were found:

▶ Analitic approach for massless partons:
Caola,Ferrario Ravasio,Limatola,Melnikov, PN 2021,[2108.08897],

same authors + Ozcelik 2022[2204.02247]

▶ Analitic approach for massive partons:
Makarov, Melnikov, Ozcelik, PN, 2023, [2302.02729],

2024[2308.05526]
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Processes with massless partons

The result is based upon two observations:

▶ Virtual corrections have no linear power corrections.
One can show that the virtual integrals give rise to constants,
logs and double logs of λ, but no linear terms in λ.

▶ The real emission term can be written in a factorised form:

dΦg = J × dΦB
d3k

k0
(2)

through the choice of a mapping to an underlying Born
Φg ↔ {ΦB , k}, (or choice of a recoil scheme).
It can be shown that if the mapping is linear in k for small k ,
no linear renormalons are present after the k integration. So:
In inclusive cross sections at fixed undelying Born no
renormalons are present.
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Processes with massless partons

Old and new results can be derived:
Linear corrections are absent in

▶ DIS (must be the case because of the OPE)

▶ Drell-Yan total cross section Beneke and Braun

▶ Drell-Yan rapidity distribution Dasgupta

▶ Dreal-Yan double differential cross section in transverse
momentum and rapidity distribution of the pair (new)

▶ In e+e−, shape variables power corrections can be computed
also in the 3-jet regime!
Before they had been computed only in the 2-jet limits, with
the only exception of the C-parameter in the 3-jet symmetric
limit (Luisoni,Monni,Salam,2019)

The results on DIS and Drell-Yan follow because on can find an
appropriate mapping that also maintains fixed Q2 and xbj for DIS,
and the Drell-Yan pair kinematics for Drell-Yan.
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Processes with massive partons

The generic statement that can be made for massless partons
cannot be generalized to the massive case. Nevertheless, with a
reasoning inspired by the Low-Burnett-Kroll theorem, some results
can be obtained also in this case. In particular:
▶ The absence of linear renormalons can be derived for B meson

decays, as long as the B mass is expressed in a short-distance
scheme (like the M̄S one). This result was already obtained
by Beneke, and it also follows from the existance of an OPE
for includive B decays.

▶ The absence of linear renormalon in the t-channel, total single
top cross section (if mt is in a short distance scheme!), and
the computation of linear corrections in the top differential
distributions.

▶ The absence of linear renormalons in qq̄ → tt̄ total cross
section (again with mt in a short distance scheme), and the
computation of linear corrections in the top differential
distributions.
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Single Top

The result for the differential distribution can be expressed as a
shifts in the argument of the Born cross section. For the transverse
momentum and rapidity of the top the shift are given by

δNP[p⊥]

p⊥
=

αsCF

2π

πλ

mt

δNP[yt ] =
αsCF

2π

πλ

mt
× 8m2

t s ch
2(yt)

(s +m2
t )

2

Since we have
δNPmt

mt
=

αsCF

2π

πλ

mt

we can use current determination of the top quark pole mass
renormalon uncertainty δNPmt = 0.1− 0.2 GeV to estimate these
effects.
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qq̄ → tt̄

The results have a more interesting structure
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For example, for the pt distribution

δNP[p⊥]

p⊥
=

αsCF

2π

πλ

mt

2CF stt̄ − CA4m
2
t

2(stt̄ − 4m2
t )

,

with an enhancement near thresh-
old and a change of sign depending
upon a colour factor combination.
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e+e− shape variables: why we can compute them

Recall our results for massless partons, applied to the process e+e− → qq̄γ.
We can write, for a generic shape variable

S =

∫
dσ(p, k) [S(p, k)− S(p̃)] +

∫
dσ(p, k)S(p̃),

where p̃ are the underlying Born momenta. According to our finding the second
term cannot yield linear NP corrections, since it can be integrated over the
radiation variables at fixed underlying Born.
So, only the first term is left, and it receives contributions only from the real
emission of a soft gluon, that, thanks to the suppression of the square bracket,
can be computed in the soft limit.

Since the correction depends only upon the soft eikonal approximation for the
soft emission, we can put forward the hypothesis that it can be extended to
final states involving also gluons.

Complications due to the gluon splitting into a qq̄ give rise to the same Milan
factor Dokshitzer, Marchesini and Salam that is found in the case of the 2-jet
region.
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Non-perturbative corrections can be parametrized as a shift in the
perturbative cumulant distribution:

Σ(s) −→ Σ(s + HNPζ(s)), where Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and HNP ≈ Λ/Q is a non-perturbative parameter that must be
fitted to data.
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The dot in the plots represents the constant value that was used in
earlier studies. The value of ζ(c) at the symmetric point c = 3/4
was also computed by Luisoni,Monni,Salam 2021.
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(G.Zanderighi,P.N.2023) In some cases ζ is negative!
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αS from e+e− shape variables

▶ Historically the framework of choice to measure αS directly from the
qq̄g vertex.

▶ In practice: very convincing at the 10% level; affected by
non-perturbative uncertainties if one wants higher precision

▶ αS(MZ ) from NNLO+NLL+Monte Carlo models:

▶ 0.1224± 0.0039 ALEPH 2009, [arXiv:0906.3436].)
▶ 0.1189± 0.0043 OPAL 2011, [arXiv:1101.1470])
▶ 0.1172± 0.0051 JADE 2009, [arXiv:0810.1389]

The use of Monte Carlo models to correct for hadronization effects have

long been criticized, since the interplay of perturbative and

non-perturbative effects in Shower Monte Carlo is not fully clear.
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αS from e+e− shape variables

As an alternative, another class of determi-
nations is based upon analytic modeling of
non-perturbative effects, using methods like
SCET, dispersive models and low scale QCD
effective couplings, and using NNLO+N3LL
calculations:

▶ 0.1135± 0.0011 R.Abbate et al,
2011, [arXiv:0809.3326]

▶ 0.1134 +0.0031
−0.0025

Gehrmann,Luisoni,Monni,
2013,[arXiv:1210.6945]

▶ 0.1123± 0.0015 Hoang et al,
2015 [arXiv:1501.04111]

They tend to result in a rather low value,

not in good agreement with world data. 0.110 0.115 0.120 0.125 0.130

αs(M
2
Z)

August 2021

BDP 2008-16

Boito 2015

Boito 2018

PDG 2020

τ decays
&

low Q2

Mateu 2018

Peset 2018

Narison 2018 (c ̄c)

Narison 2018 (b ̄b)

QQ
bound
states

BBG06

JR14

ABMP16

NNPDF31

CT18

MSHT20

PDF fits

ALEPH (j&s)

OPAL (j&s)

JADE (j&s)

Dissertori (3j)

JADE (3j)

Verbytskyi (2j)

Kardos (EEC)

Abbate (T)

Gehrmann (T)

Hoang (C)

  e +e −

jets
&

shapes

Klijnsma (t ̄t)
CMS (t ̄t)
H1 (jets)*

d'Enterria (W/Z)

HERA (jets)

hadron
colliders

PDG 2020

Gfitter 2018
 electroweak

FLAG2019 lattice

19 / 47



Results from Zanderighi, P.N. 2023

Simultaneous fit to C , t and y3, both for our newly computed ζ(v), and,

for comparison, with ζ(v) → ζ2J(v) = ζ(0) (traditional method for the

computation of power corrections).
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The central value is at αs(MZ ) = 0.1174, α0 = 0.64. The
“traditional” method leads to smaller values of αS .
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Results from Zanderighi, P.N. 2023

Individual fits:
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Only the combination of the three observables leads to a sensible
determination of αS
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VERY PRELIMMINARY: followup on e+e− fits

(with G. Zanderighi)

▶ We want to include all data, also at different energies.

▶ We want a better treatment of theoretical errors, by performing the fits at
the central scale, and at its variations by a factor of 2 below and above.

▶ We hope that the availability of different energies should lead to a more
reasonable determination for single observables.

▶ In order to get a better fit of the very precise Z -peak data, we chose the
central scale to be a function of the shape variable:
We first compute the average kT as a function of the value of each shape
variable (computed at the LO level), and then choose the kT as central
value of the scale. Fitting only ALEPH data on the Z peak we get:

χ2/dof αS(MZ ) α0

fixed scale 1.99 0.1157 0.61

running scale 1.21 0.1183 0.61
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DATASETS

EXPERIMENTS AND ENERGIES

DELPHI 91.2 45 66 76 133 161 172 183 189 192 196 200 202 205 207
ALEPH 91.2 133 161 172 183 189 200 206
OPAL 91.2 133 177 197
L3 91.2 41.4 55.3 65.4 75.7 82.3 85.1 130.1

136.1 161.3 172.3 182.8 188.6 194.4 200
JADE 22 35 44
TRISTAN 58
JADEOPAL 91.2 35 44 133 161 172 183 189
SLD 91.2
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VERY PRELIMINARY PLOTS

Fitting Thrust, C-parameter and y3 at the same time

 0.6

 0.6005

 0.601

 0.6015
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 0.6025

 0.603

 0.1175  0.1176  0.1177  0.1178  0.1179  0.118  0.1181

Δ χ2=2
Δ χ2=1
center

Leading to αS(MZ ) = 0.1178, and α0 = 0.60, with χ2 = 1257.7
over 947 degrees of freedom (χ2/dof = 1.33).
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VERY PRELIMINARY PLOTS

Results for scale variation (scfac), and variation lower limit (llfac).
The lower limit is obtained by multiplying the peak position by
llfac, with some further adjustments for y3.

scfac llfac αS(MZ ) α0 χ2 χ2/dof ndeg

0.5 1.5 0.1159 0.6969 2263 2.65 852

0.5 1.7 0.1159 0.6944 2213 2.64 837

0.5 2 0.1168 0.6671 1961 2.40 816

1 1.5 0.1164 0.6267 1631 1.65 983

1 1.7 0.1178 0.6029 1257 1.33 943

1 2 0.1182 0.5875 1147 1.28 895

2 1.7 0.1171 0.5725 1619 1.68 964

2 2 0.1168 0.5829 1492 1.63 915

Notice that the best fit is for our central scale, as long as the low
limit is not too small.
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VERY PRELIMINARY PLOTS

Fitting Thrust, C-parameter and y3 individually:
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we see a tension between y3 and the C/T results, especially
regarding the value of α0. On the other hand the contribution to
the χ2 from y3 alone in the global fit shown earlier is 1× ndeg
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VERY PRELIMINARY PLOTS

Fitting C and T together:
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with αS(MZ ) = 0.1171 and α0 = 0.6185, χ2/dof = 1.33.
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Conclusions

▶ I illustrated recent progress on the calculation of
non-perturbative corrections in the large β0 limit

▶ Very simple results for a number of observables involving only
massless coloured partons.

▶ More complex results when heavy quarks are present.

▶ The simplest framework where these results can be tested is
the study of shape variables in e+e− annihilation. A previous
attempt used only ALEPH data at MZ .

▶ Ongoing, encouraging results using all available energy and
experiments. The fit to y3 raises some doubts.

▶ To be done: better understanding of y3, and how to estimate
theoretical errors.
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BACKUP SLIDES
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(old) NP effects

Taking the ζ functions to be constant, equal to thei two-jet value:
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Quality of the fit
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Quality of the fit
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Quality of the fit
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Quality of the fit
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Quality of the fit
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Quality of the fit
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Quality of the fit
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Quality of the fit
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Fit details

Take vi to span all bins of all shape variables considered; we define

χ2 =
∑
ij

∆iV
−1
ij ∆j , ∆i =

(
1

σexp

dσexp(vi )

dvi
− 1

σth

dσth(vi )

dvi

)
,

Vij = δij(R
2
i + T 2

i ) + (1− δij)CijRiRj + Cov
(Syst)
ij

▶ Ri : statistical error

▶ Ti : theoretical error (scale variation plus error estimate of
non-perturbative shift).

▶ Cij statistical correlation (from Monte Carlo simulation)

▶ Cov
(Syst)
ij : systematics covariance matrix
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Variation αs (MZ ) α0 χ2 χ2

Ndeg

Default setup 0.1174 0.64 6.8 0.15
Ren. sc. Q/4 0.1180 0.60 6.1 0.14
Ren. sc. Q 0.1182 0.68 7.9 0.18
NP sch. (b) 0.1186 0.79 6.4 0.15
NP sch. (c) 0.1194 0.84 4.7 0.11
NP sch. (d) 0.1184 0.66 5.2 0.12
P-scheme 0.1150 0.63 9.5 0.22
D-scheme 0.1188 0.79 5.1 0.12

Std. scheme 0.1168 0.58 8.1 0.18
No hq corr. 0.1176 0.68 6.2 0.14
Herwig 6 0.1174 0.60 14.7 0.33
Herwig 7 0.1174 0.60 10.9 0.25
Ranges (2) 0.1166 0.62 12.3 0.22
Ranges (3) 0.1178 0.69 2.4 0.07
Alt. correl. 0.1180 0.62 5.8 0.13
y3 clustered 0.1166 0.67 7.6 0.17

C 0.1252 0.47 0.9 0.06
τ 0.1188 0.64 0.7 0.03
y3 0.1196 1.90 0.0 0.00

C , τ 0.1230 0.51 2.0 0.05

Several variations of setup param-
eters/methods lead to variations
of the central value of order 1%.
Among them

▶ Central ren. scale

▶ Ambiguity in
implementation of NP
corrections

▶ Treatment of correlation in
systematic errors

▶ Treatment of hadron masses
(P, D and std. schemes)
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Quality of the fit for C , τ and y3, using the new calculation of the
non-perturbative effect (i.e. the full ζ(v) dependence.)
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Prediction for M2
H , M

2
D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Good fit away from the two
jet region.
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Prediction for M2
H , M

2
D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Good fit far away from the
two jet region.
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Quality of the fit for C , τ and y3, obtained setting ζ(v) = ζ(0).
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Prediction for M2
H , M

2
D and BW using the fitted values of αS and

α0 obtained by fitting C , τ and y3.
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No Good fit in any region.
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Prediction for M2
H , M

2
D and BW using the fitted values of αS and

α0 obtained by fitting C , τ and y3.
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No Good fit in any region.
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