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General motivation
Success of the LHC physics program relies on precise theoretical
understanding of the Standard Model.

[talks by Federico and Fabrizio].
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Fixed order partonic cross sections

Collinear factorization:

At least NNLO QCD and NLO EW corrections must be included to achieve percent level

theory uncertainties (⊕ PDFs, parton showers, resummations).

This talk: recent advances in multi-scale NNLO QCD corrections.
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NNLO QCD multiplicity frontier
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Two-loop multi-scale amplitudes:
state of the art



Loops & legs: state of the art
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Two-loop five-point amplitudes: massless

Complete since the end of last year

Comment
Complete

analytic results
Public code Cross sections

pp → γγγ l.c.⋆ [4, 5] [4] [11, 12]

pp → γγj l.c.⋆ [2, 3] [2] [10]

pp → jjj l.c. [1] [1] [8, 9]

pp → γγγ [14] [14]

pp → γγj [6]

gg → γγg NLO loop induced [7] [7] [13]

pp → γjj [15] [15]

pp → jjj [16,17,18] [17]

pp → tt̄H mt,mH → 0 limit [19]

[1] [Abreu, Febres Cordero, Ita, Page, VS ’21]

[2] [Agarwal, Buccioni, von Manteuffel, Tancredi ’21]

[3] [Chawdry, Czakon, Mitov, Poncelet ’21]

[4] [Abreu, Page, Pascual, VS ’20]

[5] [Chawdry, Czakon, Mitov, Poncelet ’20]

[6] [Agarwal, Buccioni, von Manteuffel, Tancredi ’21]

[7]
[Badger, Brønnum-Hansen, Chicherin, Gehrmann,

Hartanto, Henn, Marcoli, Moodie, Peraro, Zoia ’21]

[8] [Czakon, Mitov, Poncelet ’21]

[9] [Chen, Gehrmann, Glover, Huss, Marcoli ’21]

[10] [Chawdry, Czakon, Mitov, Poncelet ’21]

[11] [Chawdry, Czakon, Mitov, Poncelet ’19]

[12] [Kallweit, VS, Wiesemann ’20]

[13] [Badger, Gehrmann, Marcoli, Moodie ’21]

[14] [Abreu, de Laurentis, Ita, Klinkert, Page, VS ’23]

[15] [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia ’23]

[16] [de Laurentis, Ita, Klinkert, VS ’23]

[17] [de Laurentis, Ita, VS ’23]

[18] [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi ’23]

[19] [Wang, Xia, Yang, Ye ’24]

Evaluation of Feynman integrals: pentagon functions [Chicherin, VS ’20]
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Application in αs measurement

6/28



Two-loop five-point amplitudes: one external mass

Comment
Complete

analytic results
Public code Cross sections

pp → Wbb̄ l.c.⋆, on-shell W [1]

pp → W (lν)bb̄ l.c., mb = 0 [2, 3] [10] [3, 4, 7]

pp → W (lν)tt̄ l.c., mt = 0 [2, 3] [10] [8]

pp → Z(ll)bb̄ l.c.⋆, mb = 0 [2] [10] [9]

pp → W (lν)jj l.c. [2] [10]

pp → Z(ll̄)jj l.c.⋆ [2] [10]

pp → W (lν)γj l.c.⋆ [5]

pp → Hbb̄ l.c., mb = 0 [6] [Christian’s talk]

[1] [Badger, Hartanto, Zoia ’21]

[2] [Abreu, Febres Cordero, Ita, Klinkert, Page, VS ’21]

[3] [Hartanto, Poncelet, Popescu, Zoia ’22]

[4] [Hartanto, Poncelet, Popescu, Zoia ’22]

[5] [Badger, Hartanto, Kryś, Zoia ’22]

[6] [Badger, Hartanto, Kryś, Zoia ’21]

[7] [Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini ’22]

[8] [Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini ’23]

[9] [Mazzitelli, VS, Wiesemann ’24]

[10] [de Laurentis, Ita, Page, VS in preparation]

Evaluation of Feynman integrals: pentagon functions

[Chicherin, VS, Zoia ’21] [Abreu, Chicherin, Ita, Page, VS, Tschernow, Zoia ’23]
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Two-loop five-point amplitudes: beyond one external mass

Comment
Complete

analytic results
Public code Cross sections

[Image by DALL-E]

−→ [Samuel’s talk]
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Two-loop five-point scattering: first results with masses in loops

No complete amplitudes or integral families known

Integrals

• Analytic study of integral families for pp → tt̄j (l.c.)

[Badger, Becchetti, Chaubey, Marzucca ’23] [Badger, Becchetti, Giraudo, Zoia ’24]

• Analytic study of integrals for pp → tt̄H contribution with a light quark loop in l.c.

[Febres Cordero, Figueiredo, Kraus, Page, Reina ’23]

• Numerical evaluation on a few points possible with AMFlow approach [Liu, Ma ’21,’22]

Amplitudes

• Numerical evaluation of light and heavy quark loop contributions to qq̄ → tt̄H

[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson ’24]
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Warning: two-lop “mass-in-the-loop” frontier

With massive particles in loops analytic (mathematical) complexity may escalate

abruptly and dramatically!

Underlying reason: integrals associated with nontrivial algebraic curves and surfaces (e.g.

elliptic curves)

Example: pp → tt̄

✓ analytic results for qq̄ → tt̄ with top loops [Mandal, Mastrolia, Ronca, Bobadilla ’22], evaluation

“easy”

analytic results for gḡ → tt̄ with top loops [Adams, Chaubey, Weinzierl ’17,’18]

[Badger, Chaubey, Hartanto, Marzucca ’21], but unclear how to evaluate efficiently due to the

presence of elliptic curves

But

• Cross sections computed with numerical methods and interpolation grids since long time

ago [Czakon ’08] [Bärnreuther, Czakon, Fiedler ’13]

• Recent example: NLO corrections for gg → ZZ [Agarwal, Jones, Kerner, von Manteuffel ’24]

Not discussed in this talk −→ [Andreas’s talk]
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Dynamic and fixed scales

Dynamic scales

• Mandelstam invariants sij ,

off-shell legs p2i

• Monte Carlo integrals over phase

space∫
dΦn (sij , p

2
i )
∣∣A2→n(sij , p

2
i )
∣∣2

• Need fast and robust numerical

evaluation of A2→n over phase space

Fixed scales

• Particle (complex) masses, e.g.

mt,mW

• Mathematical complexity can

escalate very quickly

• With few dynamic scales can profit

the most from numerical methods ⊕
interpolation grids

In the following I mainly highlight dealing with many dynamic scales.
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Analytic methods: selected
highlights



Analytic multi-loop amplitude calculations
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What is a “good” transcendental functions basis?

Analytic properties

• No hidden identities (basis)

• Analytic cancellation of UV and IR divergences (minimize regularization artifacts)

• Control over physics properties (amplitudeology friendly)

• Compact rational coefficients

Numerical evaluation

• Over whole physical phase space

• Fast (Monte-Carlo integration over large phase space)

• Stable
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Analytic methods: selected
highlights

Feynman integrals



Pure integrals and canonical differential equations
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Pure integrals and canonical differential equations
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How to solve DE?
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How to solve DE?
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How to solve DE?
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Pentagon functions construction
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Example: one-mass pentagon functions
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Case study: importance of transcendental function basis

Consider triphoton hadroproduction in NNLO QCD (l.c.)

[Chawdry, Czakon, Mitov, Poncelet ’19]

using earlier incarnation of (planar) pentagon

functions [Gehrmann, Henn, Lo Presti ’18]

• Rationalized kinematics required due to

precision loss

• Average time 17 minutes to typically get

2 digits

• Need interpolation grids (very

challenging for many dynamic scales)

[Abreu, Page, Pascual, VS ’20]

using “good” function basis [Chicherin, VS ’20]

• Double precision sufficient

• 1 second to typically get 11 digits

• Same efficiency for full color !

[Abreu, de Laurentis, Ita, Klinkert, Page, VS ’23]
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Analytic methods: selected
highlights

Rational coefficients



Rational coefficients
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Analytics from (exact) numerics

Main lesson

Rational coefficients r⃗
i
simple (given a good gi⃗ function basis).

• Bypass intermediate expression swell by exact numerical evaluations over Fp:

p < machine integer =⇒ efficient

• Reconstruct analytic expressions from numeric samples [von Manteuffel, Schabinger ’14] [Peraro ’16]

• Important bonus: enables parallelization

Most powerful when applied to physical quantities (reconstruct finite remainders)

[Abreu, Dormans, Febres Cordero,

Ita, Kraus, Page, Pascual, Ruf, VS ’20]

FiniteFlow

[Peraro ’19]

Less powerful, but also useful for IBP reduction only (reconstruct integral reduction rules)

LiteRed+FiniteFlow,

Kira+FireFly, FIRE6

numerous private codes

(e.g. Finred by A. von Manteuffel)
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Remarks on integration-by-parts reduction

• Problem conceptually solved by Laporta’s algorithm

• In practice, IBP equation systems remain major bottleneck in loop calculations

• No major breakthroughs, but process specific optimizations make the difference

Multiscale problems @ 2 loops

• Situation majorly improved by (exact) numerical frameworks

• Solving systems over Fp (setting s, ϵ to integers) typically straightforward

• Eventually number of samples for reconstruction becomes the issue

General observation

Avoiding generating identities that introduce auxiliary integrals (e.g. higher denominator

powers [Gluza, Kadja, Kosower ’11]) typically helpful.

Public proof-of-principle implementation: NeatIBP [Wu, Boehm, Ma, Xu, Zhang ’23].

Note: lots of experimentation and ideas in the literature not discussed here! [Andreas’s talk]
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Analytics from numerics workflow
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Analytics from numerics workflow

22/28



Analytics from numerics workflow

22/28



Analytics from numerics workflow
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Rational basis change
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Rational basis change examples

Example 1

Three-jet production (full color) [de Laurentis, Ita, Klinkert, VS ’23].

(see also [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi ’23]).

Numerical samples generated by Caravel.

• Reduction from 250k to 15k samples (reconstruct the latter)

• Rational basis (after additional massaging) printed in the paper, 4 pages

Example 2

Analytic results for V jj production from [Abreu, Febres Cordero, Ita, Klinkert, Page, VS ’21]

• Reconstructed analytic form that is hard to use (large numerical cancellations, large

memory footprint)

• Multivariate partial fractioning fails due to complicated Gröbner basis

• With basis change 1.2Gb → 25Mb [de Laurentis, Ita, Page, VS to appear]
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Numerical methods



Mixed analytic-numerical

Light and heavy quark loop contributions to qq̄ → tt̄H

[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson ’24]

(see also similar approach to Wjj production [Hartanto, Badger, Brønnum-Hansen, Peraro ’19])

Amplitude reduction

• Numerical with rationalized kinematics, highly optimized systems of IBP equations.

• Impressive performance: 2 minutes on one CPU.

Evaluation of integrals

• Basis optimized for sector decomposition (quasi-finite integrals [Andreas’s talk]).

• Large numerical cancellations handled by Quasi-Monte-Carlo sampling (pySecDec).

• 5 minutes on a modern GPU.

Questions

• Scaling to more complex integrands (complete amplitudes)?

• Do high-dimensional interpolation grids work?

• Two-loop corrections expected small [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini ’22]

−→ how many evaluations to validate approximations?
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Fully numerical: IR finite integrands

Idea

• Universal IR structure of color-singlet production

=⇒ locally finite integrands (before loop integration).

qq̄ → F [Anastasiou, Sterman, Venkata ’22]

gg → F [Anastasiou, Karlen, Sterman, Venkata ’24]

• Simultaneous Monte-Carlo integration over loops and phase-space.

• No IBP reduction, no dedicated computations of Feynman integrals.

• E.g. applicable to pp → V V V , which is challenging with current analytic methods.

• Proof-of-principle computation: closed-quark contributions for qq̄ → γγγ

[Matilde Vicini’s talk @ Loops&Legs 2024]

Questions

• Scaling to more complex integrands (complete amplitudes)?

• Minkowski (or threshold) singularities?

• Easy to adapt standard cross section frameworks?
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Conclusions & Outlook



Feynman integrals: analytic vs numerical

Analytic

✓ Map to MPLs for 2 → 2, when possible.

✓ For 2 → 3 “pentagon functions” method, when possible.

Biggest issue: general class of functions not understood, even mathematically.

Pentagon functions beyond d logs?

(Semi-)numerical

Solving DEs by matching local series expansions, or numerical Monte-Carlo integration of

optimized bases.

✓ Successfully sidestep analytic complexity with few dynamic scales.

✓ Less sensitive to analytic complexity, masses may actually help in practice.

✗ No function basis =⇒ analytic rational coefficients hard, large numerical cancellations

Too slow for many dynamic scales?
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Conclusions & Outlook

NNLO revolution

• Steady progress for 2 → 3 processes:

all massless complete, first result with external masses.

• Significant progress due to paradigm shift from symbolic computations to analytic

reconstruction.

• Good grasp on analytic structure of Feynman integrals and associated function spaces has

been essential.

• Multi-scale loop amplitudes remain major bottleneck, case by case computations.

Outlook

• 5-point with massless loops (e.g. Hjj, V V j, V V V ): feasible based on current methods.

• N3LO applications more challenging, potentially better analytic control will be needed.

• Massive loops, few dynamic scales: feasible with (semi-)numerical methods.

• Massive loops, many dynamic scales (e.g. tt̄j, tt̄H, tt̄W ):

requires major breakthroughs.

• Beyond 5-point: currently unimaginable (any relevant processes?).
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