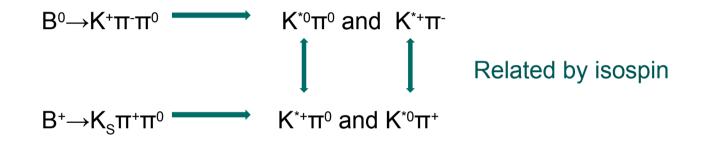


[™] Dalitz Analysis of B⁺→K_sπ⁺π⁰ Decays

OSKAR TITTEL, MARKUS REIF, STEFAN WALLNER, HANS-GÜNTHER MOSER

Max Planck Institut für Physik, Technische Universität München


DPG-Frühjahrstagung, Karlsruhe, 2024

Motivation

B meson decays via meson resonances in two-body subsystems

$$\sqrt{2}\mathcal{A}_{K^{*0}\pi^{0}} + \mathcal{A}_{K^{*+}\pi^{-}} = \sqrt{2}\mathcal{A}_{K^{*+}\pi^{0}} + \mathcal{A}_{K^{*0}\pi^{+}}$$

Motivation

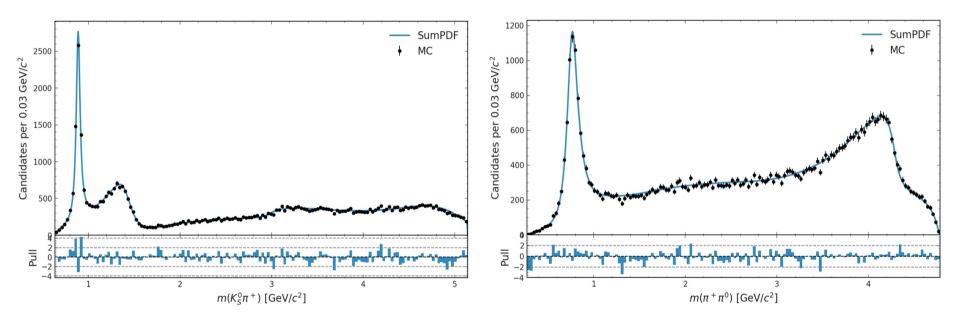
$$I_{K^*\pi} = A_{CP}^{K^{*+}\pi^-} + A_{CP}^{K^{*0}\pi^+} \frac{\mathcal{B}_{K^{*0}\pi^+}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{CP}^{K^{*+}\pi^0} \frac{\mathcal{B}_{K^{*+}\pi^0}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{CP}^{K^{*0}\pi^0} \frac{\mathcal{B}_{K^{*0}\pi^0}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\mathcal{B}_{K^{*+}\pi^0}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\tau_{B^0}}{\tau_{B^+}} - 2A_{CP}^{K^{*0}\pi^0} \frac{\mathcal{B}_{K^{*0}\pi^0}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\mathcal{B}_{K^{*+}\pi^0}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\mathcal{B}_{K^{*+}\pi^-}}{\mathcal{B}_{K^{*+}\pi^-}} \frac{\mathcal{B$$

Extract all asymmetries and BF's from Dalitz analyses of $\underline{B^0 \rightarrow K^+\pi^-\pi^0}$ and $\underline{B^+ \rightarrow K_s \pi^+\pi^0}$

Perform both analyses using the same framework to allow for a self-consistent extraction of $I_{K^*\pi}$

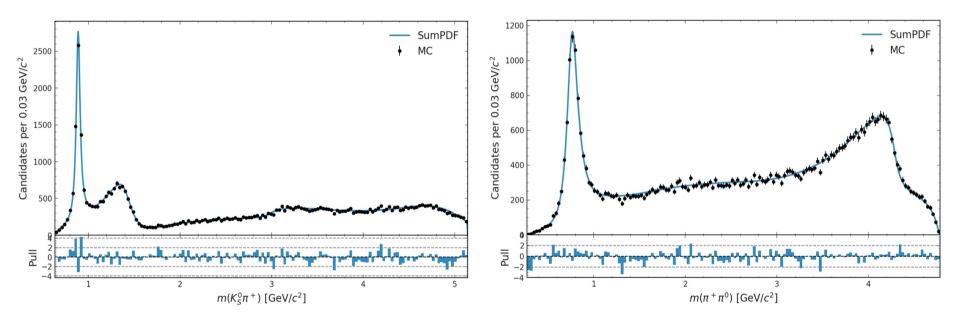
Compare extracted value with SM prediction of $I_{K^*\pi} = \mathcal{O}(1\%)$

Fit Recap


Amplitude of one resonance: $\mathcal{A}_i = L_i(J, x)T_i(J, x, y)B_i(J, x)$ Set of resonances: $K^{*0}(892)$, $\rho(770)$, ... Total amplitude: $\mathcal{A} = \sum_i c_i \mathcal{A}_i$

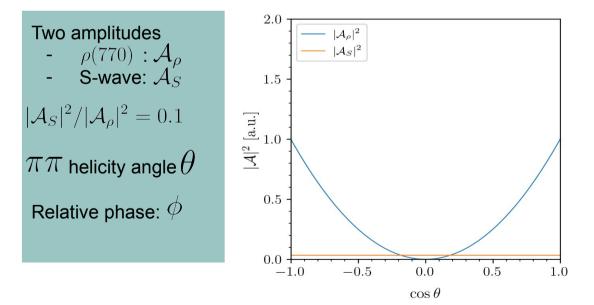
 \rightarrow Perform fit to extract c_i

Currently: Performing MC input-output studies with a fixed set of resonances



Signal MC Fit

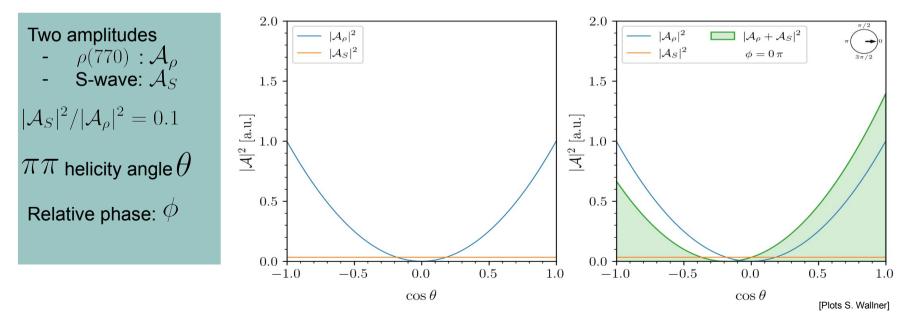
Signal MC Fit


But: Resonances are not known a priori

Selection of Resonances

Goal: Find set of waves, which are significantly contributing to the data

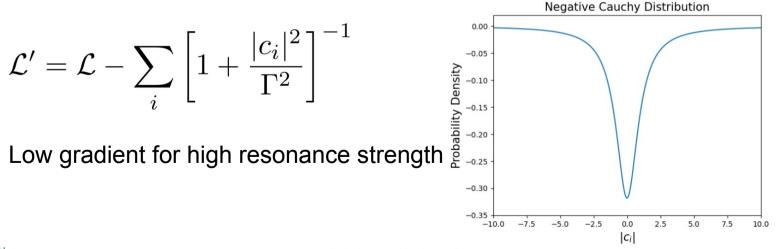
Using wrong resonances can cause dramatic shifts in the results due to interference



Selection of Resonances

Goal: Find set of waves, which are significantly contributing to the data

Using wrong resonances can cause dramatic shifts in the results due to interference

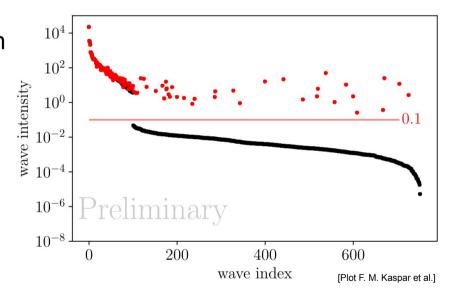

Strategy

1. Define pool of resonances:

Select considered resonances using objective rule (depending on angular momentum or energies)

2. Suppress non-significant resonances:

Add suppressing (Cauchy-) term for each resonance to the neg. likelihood



Strategy

3. Select final resonance set: Define cut-off value based on distribution of resulting resonance-strengths

4. Perform final fit:

Repeat fit with selected resonances but without Cauchy-term and extract final parameters

Summary and Conclusion

The Dalitz analysis of B⁺ \rightarrow K_s $\pi^{+}\pi^{0}$ complements the analysis on B⁰ \rightarrow K⁺ $\pi^{-}\pi^{0}$ and allows for a coherent measurement of $I_{K^{*}\pi^{-}}$ (direct test of the SM)

Currently, the full selection in this analysis is done and the fit framework is under development

Selection of used resonances is crucial for reliability of fit results and calculation of related uncertainties

 \rightarrow The ongoing development of the analysis shows promising progress, and upon completion, it will mark a significant milestone for Belle II's transition to amplitude analyses.