Analysis of $B^0 \rightarrow \rho^0 \rho^0$ decays at Belle II

Justin Skorupa, Hans-Günther Moser, and Yingming Yang

DPG 2024, Karlsruhe

2024.03.04

MAX-PLANCK-INSTITUT

Motivation - CKM Angle ϕ_2

- ► CKM Angle ϕ_2 is accessible in time-dependent analysis of $b \rightarrow u$ transitions, such as $B \rightarrow \rho\rho$, if only the tree level amplitude contributes
- Significant penguin level contribution introduces shift
- Disentangle shift via analysis of isospin related B⁰ → ρ⁺ρ[−], B⁺ → ρ⁺ρ⁰, and B⁰ → ρ⁰ρ⁰ decays

Of all $\rho\rho$ modes, an improved measurement of $\rho^0\rho^0$ has the strongest impact on precision of ϕ_2

SuperKEKB and Belle II

Belle II: general purpose detector situated at the interaction point of SuperKEKB **SuperKEKB:** asymmetric $e^+ - e^-$ collider operating at $\Upsilon(4S)$ resonance

- \Rightarrow Clean environment
- \Rightarrow Constrained beam kinematics
- \Rightarrow Good neutral reconstruction

Operation:

- Recorded: 362 fb⁻¹ on-resonance
- Achieved world record: *L* = 4.7 × 10³⁴ cm⁻²s⁻¹ (more than twice of KEKB/Belle)

SuperKEKB and Belle II

Belle II: general purpose detector situated at the interaction point of SuperKEKB **SuperKEKB:** asymmetric $e^+ - e^-$ collider operating at $\Upsilon(4S)$ resonance

Interfering Background

Different contributions lead to the same final state, e.g.,

$$B^{0} \to \rho^{0}(\to \pi^{+}\pi^{-})\rho^{0}(\to \pi^{+}\pi^{-}); \quad B^{0} \to f_{0}(\to \pi^{+}\pi^{-})\rho^{0}(\to \pi^{+}\pi^{-})$$

Quantum mechanics: Transition amplitude $\Psi = ae^{i\alpha}$. Observable (decay rate): $|\Psi|^2$

Total amplitude: $\Psi_{tot} = \Psi_{\rho^0 \rho^0} + \Psi_{f_0 \rho^0}$ Measured decay rate:

$$|\Psi_{\text{tot}}|^2 = |\Psi_{\rho^0 \rho^0}|^2 + |\Psi_{f_0 \rho^0}|^2$$

Incoherent sum: $|\Psi_{\rho^{0}\rho^{0}}|^{2} + |\Psi_{f_{0}\rho^{0}}|^{2}$

Double slit with bullets:

Interfering Background

Different contributions lead to the same final state, e.g.,

$$B^{0} \to \rho^{0} (\to \pi^{+}\pi^{-}) \rho^{0} (\to \pi^{+}\pi^{-}); \quad B^{0} \to f_{0} (\to \pi^{+}\pi^{-}) \rho^{0} (\to \pi^{+}\pi^{-})$$

Quantum mechanics: Transition amplitude $\Psi = ae^{i\alpha}$. Observable (decay rate): $|\Psi|^2$ Total amplitude: $\Psi_{\text{tot}} = \Psi_{\rho^0 \rho^0} + \Psi_{f_0 \rho^0}$ Double slit with waves: Measured decay rate:

$$\begin{split} |\Psi_{\text{tot}}|^2 = & |\Psi_{\rho^0 \rho^0}|^2 + |\Psi_{f_0 \rho^0}|^2 \\ & + 2 \mathcal{R}[\Psi_{\rho^0 \rho^0} \Psi^*_{f_0 \rho^0}] \end{split}$$

Incoherent sum: $|\Psi_{\rho^0\rho^0}|^2 + |\Psi_{f_0\rho^0}|^2$ Interference: $2\mathcal{R}[\Psi_{\rho^0\rho^0}\Psi^*_{f_0\rho^0}]$

Fit Setup

Decay rate given by

$$rac{\mathrm{d}(\Gamma+\overline{\Gamma})}{\mathrm{d}cos(heta_1)\mathrm{d}cos(heta_2)\mathrm{d}\phi\mathrm{d}m_1^2\mathrm{d}m_2^2} \propto |\sum_i \Psi_i f_i(\cos(heta_1), \cos(heta_2), \phi, m_1, m_2)|^2 + |\sum_i \overline{\Psi_i} \overline{F_i}(\cos(heta_1), \cos(heta_2), \phi, m_1, m_2)|^2$$

- m_1 and m_2 are the $m(\pi^+\pi^-)$ masses
- Ψ_i are complex amplitudes (fit parameter)
- ► *f_i* are mass (BW or flat) and angular (spherical harmonics) distributions

Fit Output

- ▶ Generate 10000 events from likelihood and fit them back
- ▶ Fitted complex amplitudes agree with those used in generation

Additional Backgrounds

Additional background from "continuum" light-quark production and non-interfering $B\overline{B}$ events.

Continuum background reduced using boosted decision tree (BDT) trained on event topology.

Disentangle continuum and noninterfering $B\overline{B}$ events by adding ΔE and BDT output to fitter.

Fitter currently separate from fit including interference effects.

Conclusion

Belle II is past LS1 :-)

The analysis of $B^0 \rightarrow \rho^0 \rho^0$ decays is crucial to improve determination of ϕ_2 .

Understanding of interference effects is essential for accurate measurement of this decay.

First steps are taken towards development of fit framework that includes these effects.