

# Upgrade of the Neural Network Track Trigger for Belle II

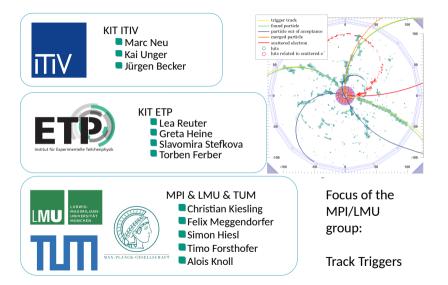
Simon Hiesl Christian Kiesling Kai Unger Sebastian Skambraks Timo Forsthofer

Master student LMU

07.03.2024

# Members of the Belle II Trigger Group



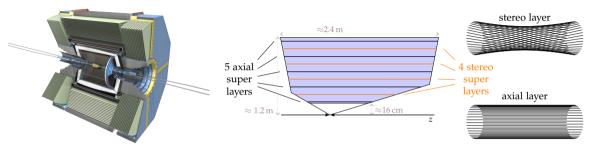


# The Central Drift Chamber (CDC) of Belle II

Track Segment (TS)



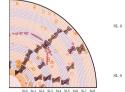
The Belle II Detector



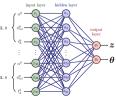
• TS = Wire pattern compatible with a crossing track  $\rightarrow$  2336 TS in 9 Super Layer (SL)







The CDC



Simon Hiesl (Master student LMU)

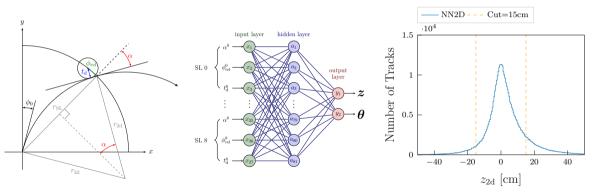
Upgrade of the Neural Network Track Trigger

# The L1 Neural Network Trigger

#### z-Vertex and polar emission angle prediction with neural network:

- 2D track + Stereo TS  $\implies z + \theta$  prediction
- One hidden layer with 81 nodes





 $\implies$  z-cut of  $\pm 15\,\mathrm{cm}$  used

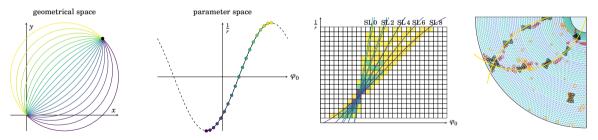
Latency budget of only 5 $\mu$ s for the complete L1 trigger  $\rightarrow$  Only 300ns for the neural computation

# Preprocessing of the Network Input: Track Finding

#### Which TS belong to a real track?

TS selection using a two-dimenisonal Hough transformation:

- Axial hit in CDC (TS) gets transformed to a curve in parameter (Hough) space
- $\bullet$  Intersection point yields the track parameters  $\phi$  and  $r_{\rm 2d} \propto p_{\rm T}$



 $\implies$  2D track candidate

The Neuro Trigger has been running for 2 years with <u>remarkable success</u>.



# Problems with the L1 Neural Network Trigger

• "Feed-Down" effect: Background tracks  $\rightarrow$  Vertex tracks

nnhwZ0vsRecoZ0

Entries

Mean x

Mean v

50 100 15 reco Track z[cm]

Std Dev x

Std Dev y

150

2567685

38.23

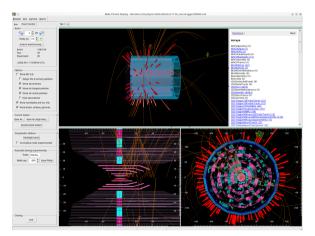
26.73

44.87

32.56

• Many Fake-Tracks with high Background

z0 reco vs z0 nnhw





-100

-50

0

100

50

0

-50

-100-150

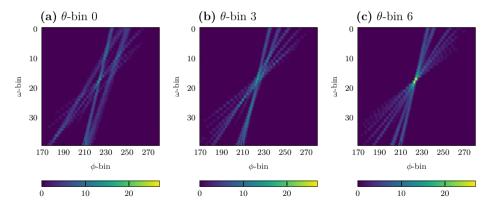
nnhw Track z[cm]

### Extension to 3D: The NDFinder

New curve parameter: Polar angle  $\theta \implies$  3D-Hough space

• 9 bins in  $\theta \in [19, 140]^{\circ}$ , 384 bins in  $\phi \in [0, 360]^{\circ}$ , 40 bins in  $\omega \propto q \cdot p_{\rm T}^{-1}$ ,  $p_{\rm T} \in [0.25, 10] \, {\rm GeV}/c$ 

Vertex assumption: The track originates from (x, y, z) = (0, 0, 0) (IP)



 $\Rightarrow$  Intersection point yields  $\omega$ ,  $\phi$  and  $\theta$ 



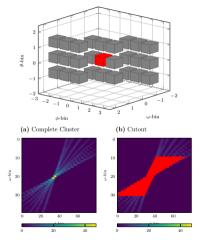
# Clustering Algorithm in 3 Dimensions

Original algorithm: DBSCAN  $\rightarrow$  Difficult to implement on an FPGA (non-deterministic length  $\implies$  latency not fixed)

Update: Fixed Clustering Three steps, repeated iterations times:

- Step 1: Global maximum search on Hough space
- Step 2: A fixed shape is put around the maximum
  - ▶ The weights in this shape are added up (total weight)
  - ▶ If total weight ≥ mintotalweight and peak weight ≥ minpeakweight the cluster is saved
  - ▶ All hits (TS) are extracted and have to pass two TS cuts
- Step 3: Cells around the global maximum are set to zero ("Butterfly-Shape" cutout)

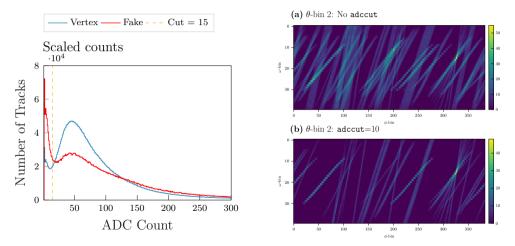




Fixed shape:

# Real Data Analysis

- Very high backgrounds were observed in the last experiment (due to high luminosity)
- The Hough spaces contain a lot of background track segments

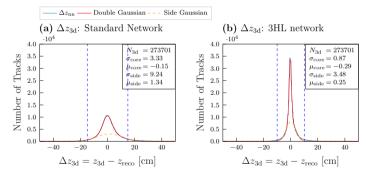


 $\Rightarrow$  Reduction of noise using a cut on the ADC count



# FPGA Implementation

- Present implementation  $\rightarrow$  2DF inder and Neuro Trigger on separate FPGA boards (2 UT3)
- New implementation  $\rightarrow$  NDFinder and Neuro Trigger on the same (new) FPGA board (1 UT4)
- The available latency is increased to **700ns**
- Neural networks with three or four hidden layers are possible



 $\implies$  Cut reduction from  $\pm 15$  cm to less than  $\pm 10$  cm possible due to better resolution (see presentation by Timo Forsthofer)



# Efficiency on Real Single Track Events

- Hit to cluster relation:
  - ▶ All hits in a cluster are considered
  - ▶ The largest weight distribution for each SL is used
- Cut on the number of axial and stereo SL hits (for background reduction)

Efficiency for single track events: Cut at  $\pm 10\,{\rm cm}$ 

| adccut    | Efficiency 3D | Efficiency 2D |
|-----------|---------------|---------------|
| No Count  | 94.1%         | 94.0%         |
| 10 Counts | 96.3%         | 95.3%         |

Fake-Rate for all found tracks:

| adccut                | Fake-Rate 3D      | Fake-Rate 2D     |
|-----------------------|-------------------|------------------|
| No Count<br>10 Counts | $13.1\% \\ 5.8\%$ | $31.6\%\ 13.5\%$ |

But: Neural network not trained for 3D candidates at the moment (see presentation by Timo Forsthofer)



# Conclusions and Next Steps

Using the 3DF inder has multiple advantages over the present 2D model with additional stereo TS selection:

- Automatic suppression of tracks outside the interaction region (candidates implicitly originate from the IP)
- Better track segment selection  $\implies$  Better resolution
- $\bullet$  Implementation of track finding and network computation on the same FPGA board  $\implies$  Deep neural networks
- Smaller Fake-Rate
- Higher efficiency

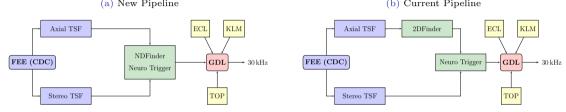
The next steps are:

- Implementation of the 3D Hough method on UT4 FPGA boards (Kai Unger)
- Improved neural network architecture (Timo Forsthofer)
- Retraining with unbiased data from the new data taking, which just has started



# Backup





#### (a) New Pipeline

(b) Current Pipeline