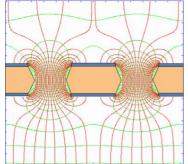
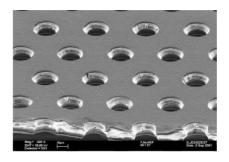
Concepts for Experiments at Future Colliders I

PD Dr. Oliver Kortner

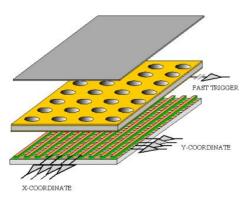

05.02.2024

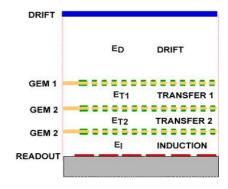
Micropattern gaseous ionization detectors


- The charge particle detection efficiency of a detector under high particle background is given/determined by the size of its active "space-time" area, i.e. its spatial granularity and its dead time.
- Micropattern gaseous ionization detectors are fast gaseous ionization detectors with high spatial granularity for the operation in high background environments.
- Most prominent examples: GEMs, MicroMegas.

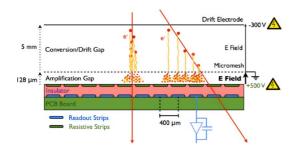
Gas Electron Multiplier (GEM)

The heart of a GEM is a thin, metal-clad polymer foil, chemically pierced by a high density of holes (typically 50 to 00 per mm².
 On application of a difference of potential between the two electrodes, electrons released by radiation in the gas on one side of the structure drift into the holes, multiply and transfer to a collection region.


Field lines and equipotentials in the GEM holes on application of a voltage between the two metal sides. A drift (top) and transfer field (bottom) transport ionization electrons into and out of the holes.

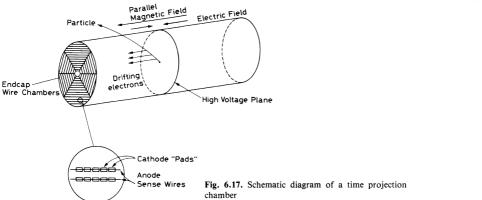

Close view of a GEM electrode, etched on a metal-clad, 50 μm thick polymer foil. The hole's diameter and distance are 70 μm and 140 μm .

Single and multiple GEMs


Schematics of a single GEM detector. Electrons released by ionization in the top gas volume drift and multiply in the holes; the charge is collected on the anode, with 1-D or 2-D projective strips, pads or other patterns.

A triple-GEM detector: gain sharing between the foils improves the reliability of operation at high gains.

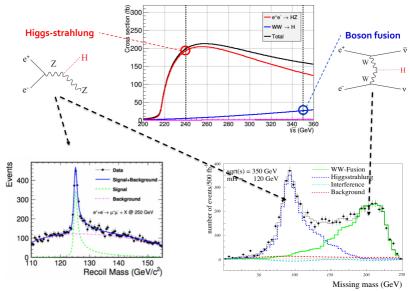
MicroMegas



- A MicroMegas can be considered as an RPC with an additional ionization and drift region.
- Advantage of the additional ionization region: higher primary charge than in an RPC.
- Disadvantage of the additional ionization region: A MicroMegas is slower than an RPC.

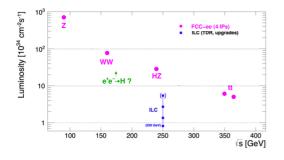
Time-Projection Chamber

 Time-projection chambers were developed in the 1980s to allow for charge particle detections with a very small amount of material along the track.


Leo 1993

- Modern TPCs use different detectors on the end caps, e.g. GEMs.
- Problem at the FCC-ee: Magnetic field must not exceed 2 T in order not to spoil the e^{\pm} beams. This leads to a reduced spatial resolution.

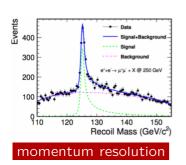
FCC-ee detector concepts

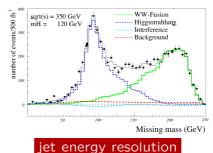

Higgs boson production at an e^+e^- Higgs factory

FCC-ee as Higgs factory plus EW and top factory

Higgs factory programme

- $2 \cdot 10^6$ HZ events (similar to the HL-LHC, but higher purity and selectrion efficiency) and 125,000 W⁺W⁻ events.
- Precise measurements of Higgs couplings to fermions and bosons.
- ullet Sensitivity to Higgs self-coupling at 2-4 σ level via loop diagrams.
- Unique opportunity to measure the electron coupling in $e^+e^- \to H$ at $\sqrt{s}=125$ GeV.

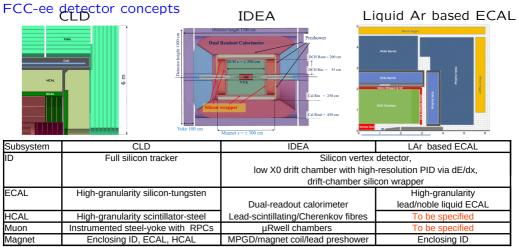

By changing the centre-of-mass energy of the collider the FCC-ee can also be operated as an electroweak and top quark factory.


- $\circ \sim 100,000 \text{ Z/s (1 Z/s at LEP)}.$
- $\bullet \sim 10,000$ Ws/h (20,000 Ws in 5 years at LEP).
- \circ $\sim 1,500$ top quarks/d.

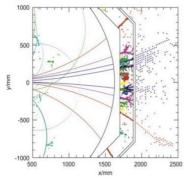
FCC-ee detector performance requirements

Higgs-strahlung

WW fusion



- $\frac{\delta p_T}{p_T} \sim 0.1\%$ for $p_T \sim 50$ GeV (to commensurate with beam energy spread).
- Jet energy resolution of $\frac{30\%}{\sqrt{E}}$ in multi-jet environment for Z/W separation.
- Superior impact parameter resolution for c and b tagging.


FCC-ee detector concepts

- 4 interaction zones at the FCC-ee allowing for 3 general-purpose detectors.
- 2 FCC-ee detector concepts, CLD and IDEA, presented in the FCC-ee CDR, + one new proposal. Designs are evolving.

- Difficult to achieve required p_T resolution and PID performance with a full silicon tracker.
- Instrumented return yoke allows for momentum determination in the muon system.
- \bullet μ Rwell new technology with unclear advantages over RPCs.

Motivation for particle-flow hadron calorimeters

- Particle-flow algorithms construct individual particles and estimate their energy/momentum in the best suited subdetector.
- Particle-flow algorithms require highly granular subdetectors including the calorimeters.
- Particle-flow algorithms use the granularity to separate the neutral form the charged contributions and exploit the tracking system to measure charged particle momenta precisely.

$$E_{jet} = E_{charged} + E_{\gamma} + E_{neutral\ hadrons}$$

Fraction 65% 26% 9%

Charged track resolution	$\frac{\delta p}{p} \lesssim 0.1\%$
γ energy resolution	$\frac{p}{\delta E} \sim \frac{12\%}{\sqrt{E}}$
Neutral hadron energy resolution	$\frac{\delta E}{E} \sim \frac{45\%}{\sqrt{E}}$

Dual read-out based calorimeters

Starting idea

- Use scintillators to detect/measure the energy depositions of shower particles.
- Use Čerenkov light to measure the spead of light of relativistic charged shower paricles.

Scintillation signal ${\it S}$ and Čerenkov signal ${\it C}$

$$S = E \left[f_{em} + \frac{1}{(e/p)}_{S} (1 - f_{em}) \right],$$

$$C = E \left[f_{em} + \frac{1}{(e/p)_{C}} (1 - f_{em}) \right].$$

If one knows $(e/p)_S$ and $(e/p)_C$, one gets

$$E = \frac{S - \chi \cdot C}{1 - \chi}$$

with

$$\chi := \frac{1 - (p/e)_S}{1 - (p/e)_C}$$

which is independent of E and the particle nature.

Recapitulation of important topics

Topology of a pp collision event

Particles which can be produced in a pp collision

Leptonen

- Neutrinos: stable, but only weakly charged. ⇒ No interaction leading to a measurable electronic signal in the detector components.
- Electrons: stable, electrically charged. \Rightarrow Electronic signals in the detector components.
- <u>Muons</u>: unstable, but ultrarelativistic, hence longlived in the laboratory system that they do not decay in the detector; electrically charged. ⇒ Electronic signals in the detector components.
- ullet au leptons: unstable. \Rightarrow Have to be detected via their decay products.

Topology of a pp collision event

Further final state particles

Hadrons

- In the pp collision quarks and gluons are formed. Due to the quark confinement, we do not see quarks and gluons in the detector, by so-called "hadron jets" which are created from the initial quarks and gluons.
- Special role of two types of quarks:
 - b quarks build longlived b hadrons which makes it possible to identify b quark jets.
 - t quarks are so shortlived that they cannot build hadron. They can be identified by the decay $t \to Wb$.
- Jets contain mainly the lightes mesons, namely π^+ , π^- , π_0 which are quasistable due to the large Lorentz boost.

Photons

Photons are stable. They are electrically neutral, but can create electromagnetic showers in the detector material which can be detected.

Interaction of charged particles with matter

Two effects in the passage of charged particles through matter:

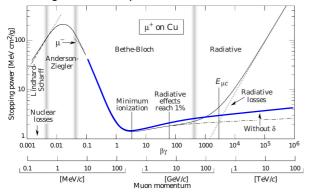
- Energy loss.
- Deflection from the original trajectory.

Processes causing energy loss and deflection

- Inelastic scattering off atomic electrons in the traversed material.
- Elastic scattering off the nuclei of the traversed material.
- Emission of Čerenkov radiation.
- Nuclear reactions.
- Bremsstrahlung.

The radiation field of an accelerated charge is proportional to its acceleration a_{charge} . The energy of the radiation is proportional to $|\vec{E}|^2$ which is proportional to $a_{charge}^2 = \left(\frac{F}{m}\right)^2 \propto \frac{1}{m^2}$. Hence bremsstrahlung is only important for electrons, but not for heavy charged particles.

Energy loss of heavy charged particles


Heavy charged particles lose energy by excitation and ionization of atoms. The energy loss is described by the Bethe-Bloch formula:

$$-\frac{dE}{dx} = \frac{4\pi nz^2}{m_e c^2 \beta^2} \cdot \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2 \beta^2}{I(1-\beta^2)} - \beta^2\right)\right];$$

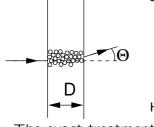
 $\beta = v/c$: Velocity of the particle. E: Energy of the particle.

z: Charge of the particle. e: Elementary charge. n: Electron density of the material.

I: Average excitation potential of the material.

Multiple scattering

Schweres geladenes Teilchen (Ladung: ze) θ


Scattering off a single nucleus:

$$\theta = \frac{\Delta p}{p} \propto \frac{z \cdot Z}{p}.$$

Atomkern Ladung: Ze

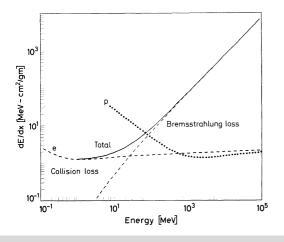
$$<\theta> = 0, 0 \neq \theta_0^2 := Var(\theta) \propto \frac{z^2 \cdot Z^2}{p^2}.$$

Scattering off many nuclei:

$$\Theta_0^2 := Var(\Theta) = \sum_{collisions} \theta_0^2 \propto D \cdot z^2 \cdot Z^2 p^{-2}.$$

Hence $\Theta_0 \propto rac{\sqrt{D}}{p}$.

The exact treatment gives


$$\theta_0 := \frac{13, 6 \text{ MeV}}{E} \sqrt{\frac{d}{X_0}},$$

where the term under the square root happens to be equal to the radiation length X_0 of the material.

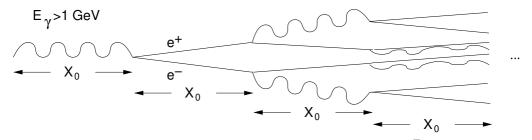
Energy loss of electrons (and positrons)

 m_e is so small that the acceleration the electrons/positrons experience in collisions with atomic nuclei is so large that bremsquanta can be emitted.

$$\left. \frac{dE}{dx} \right|_{e^{\pm}} = \left. \frac{dE}{dx} \right|_{collisions} + \left. \frac{dE}{dx} \right|_{Bremsstrahlung}.$$

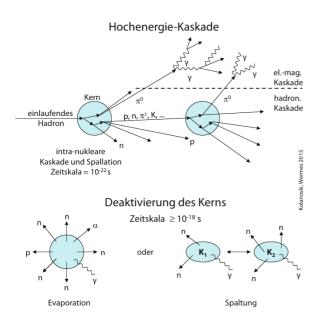
Critical energy E_k

$$\frac{dE}{dx}\Big|_{collisions}(E_k) = \frac{dE}{dx}\Big|_{Brems}(E_k).$$


 $E_k pprox rac{800 \text{ MeV}}{Z+1/2}$, such that bremsstrahlung is the dominant process for $E_{e^\pm} > 1$ GeV.

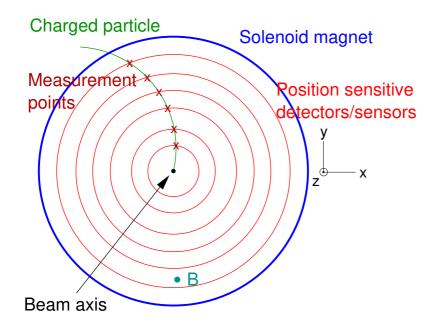
Interaction of photons with matter

Dominant processes

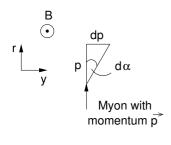

- 1. Photoelectric effect.
- 2. Compton scattering
- 3. e^+e^- pair production
- \Rightarrow A beams of photons does not lose energy when passing through matter, but intensity because all three processes remove photons from the beam.

Electron photon showers

- After a distance $n \cdot X_0$: 2^n particles with energy $E_n \approx \frac{E_{\gamma}}{2^n}$.
- End of the cascade (shower), if $E_n=E_k$: $n=\frac{\ln\frac{E_\gamma}{E_k}}{\ln 2}$.
- Shower length: $n \cdot X_0 = X_0 \cdot \frac{\ln \frac{E_{\gamma}}{E_k}}{\ln 2}$.
- Transverse size of the shower independent of E_γ : $L_\perp \approx 4R_M = 4X_0 \frac{21,2~{\rm MeV}}{E_k}.$


Hadron showers

Similar behaviour like electromagnetic showers:


- Shower length proportional to $\lambda_A \approx 35~{\rm g\,cm}^{-2} \frac{A^{1/3}}{\rho} \gg X_0.$
- Transverse size independent of the energy of the primary hadron: λ_A .
- But much stronger variations of the shower size than in case of electromagnetic showers.

Basic structure of a particle detector at a hadron collider

Charged particle trajectories in the inner detector

$$d\alpha = \frac{dp}{p} = \frac{qvBdt}{p} = \frac{q}{p}B\underbrace{vdt}_{=ds=dr} = \frac{q}{p}Bds.$$

Hence we get

$$\alpha(r) \approx \frac{q}{p} \int_{r_0}^r B(s) ds$$

and

$$y(r) = \int_{r_0}^r \alpha(r')dr' = \frac{q}{p} \int_{r_0}^r \int_{r_0}^{r'} B(s) ds dr'.$$

Beispiel. p=1 GeV. $r_0=0$. B=2 T. $\alpha(10 \text{ cm})=60 \text{ mrad. } y(10 \text{ cm})=3 \text{ mm.}$ $\alpha(1 \text{ m})=0,6 \text{ rad. } y(1 \text{ m})=30 \text{ cmm.}$

Momentum resolution in the inner detector

ullet Deflection angle at distance r from the pp interaction point:

$$\alpha(r) = \frac{q}{p} \int_{0}^{r} B \, ds$$

- Total deflection angle: $\alpha := \alpha(r_{max})$ (r_{max} radius of the inner detector).
- Error propagation:

$$\delta\alpha = \frac{|q|}{p^2} \int_0^{r_{max}} B \, ds \cdot \delta p = \alpha \cdot \frac{\delta p}{p} \iff \frac{\delta p}{p} = \frac{\delta \alpha}{\alpha}$$

$$\frac{\delta p}{p} = \frac{\delta \alpha}{\frac{|q|}{p} \int_0^{r_{max}} B \, ds}$$

Momentum resolution in the inner detector

$$\frac{\delta p}{p} = \frac{\delta \alpha}{\frac{|q|}{p} \int_{0}^{r_{max}} B \, ds}$$

ullet Contributions to $\delta lpha$

$$\delta\alpha = \sqrt{(\delta\alpha_{mult.\ scatt.})^2 + (\delta\alpha_{det.\ res.})^2}$$
$$= \sqrt{\left(13,6\ \text{MeV}\sqrt{\frac{D}{X_0}}\right)^2 + (\delta\alpha_D)^2}$$

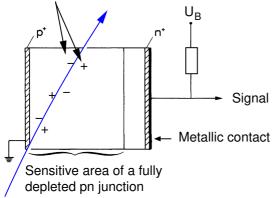
Hence

$$rac{\delta p}{p} = rac{13,6 \,\, {
m MeV} \sqrt{rac{D}{X_0}}}{|q| \int B \, ds} \oplus rac{\delta lpha_D}{|q| \int B \, ds} \cdot p$$

- ⇒ Best possible momentum given by the ratio of multiple scattering and the magnetic field integral.
- \Rightarrow High momenta (small values of α): Momentum resolution determined by the ratio of the spatial resolution of the detector and the magnetic field integral. The momentum resolution degrades with increasing p.

Instrumentation of inner detectors

Requirements


- Littel amount of detector material to minimize the multiple scattering contribution to the momentum
- High position resolution to maximize the momentum resolution for highly energetic particles.
- High granularity to be able to separated tracks of individual particle for high particle densities.
- Radiation hardness.

Used detector types

- Originally gaseous ionization detectors were used. These have a small material budget, but limited spatial resolution, granularity, and radiation hardness.
- Nowadays: semiconductor detectors which offer high spatial resolution and high granularity.

Basic principle of a semiconductor detector

Liberated charge carriers which are pulled by the electric field towards the contact

lonizing particle

In order to prevent the creation of an ohmic contact with a deplection zone extending far into the semiconductor, contact surfaces with highly doped layers are used.

Calorimeter types

Nomenclature

Passive medium: Material in which the shower develops.

Aktive medium: Material in which the electronically detectable signals

of the shower particles are created.

Two types of calorimeters

- Homogeneous calorimeters, in which the active material also serves as passive material.
- <u>Inhomogeneous calorimeters</u> or sampling calorimeters with alternating layers of active and passive materials.

Hadron calorimeters are always sampling calorimeters in order to limit their size. There are homogeneous and inhomgeneous electromagnetic calorimeters.

Energy resolution and linearity

Energy resolution

- The energy measurement in a calorimeter consist of the detection of the shower particles. The measured energy is proportional to the number of detected shower particles N leading to $\frac{\delta E}{E} = \frac{\delta N}{N} = \frac{1}{\sqrt{N}}$.
- In a real calorimeter contributions to the energy resolution from detector noise and mechanical and electronic non-uniformities must be taken into account:

$$\frac{\delta E}{E} = \frac{a}{\sqrt{E}} \oplus \underbrace{\frac{b}{E}}_{Non-uniformities}$$

Linearity

Not only $\frac{\delta E}{E}$ is important, but also that the measureed signal depends linearly on E.

Instrumentation of a calorimeter

- Scintillation counters are important detectors for the active part of a calorimeter.
- Material which emit a small flash of light when hit by radiation Important properties of the signal of a scintillation counter:
 - Above a certain minimum energy deposition, the amount of scintillation light is proportional to the deposited energy (in good approximation).
 - Fast response, i.e. the light signal is created a short time after the energy deposition.
- Liquid argon is also used as active medium in calorimeters.
- In liquid argon the noble gas has such a high density that the shower particle liberate many electrons by ionization.
- In order to collect these electrons the liquid argon is enclosed by two electrodes at high voltage.

Muon detection

See lectures on Jan. 8!

Many thanks for your participation in the course!
I would be happy to meet you for the second part of the lecture in the
summer semester.