Kazunori Hanagaki (KEK)

KEK Science

Congratulations

Congratulations on the start-up of the wonderful new laboratory.

Thank you so much for inviting me to this memorial event.

Collaboration with HLL/Max Planck/Germany is highly appreciated, which is crucial for our science programs.

Deep apologies from Shoji Asai, KEK Director General, for not being here

KEK Organization

- KEK = High Energy Accelerator Organization
 - ▶ was used to be High Energy Laboratory (HEL???) 高エネルギー研究所: Kou Enerugi Kenkyujo ⇒ KEK

- Two institutes for users from University
 - Institute of Particle and Nuclear Physics
 - Institute of Materials Structure Science
- Two facilities
 - Accelerator Laboratory
 - Applied Research Laboratory
- Two centers
 - ► QUP
 - ► J-PARC

Mission of KEK

Mission is to push forward boundary of human knowledge by <u>accelerator based science</u>

The origin of the Universe

- SuperKEKB/Belle II
- · LHC/ATLAS
- T2K/HyperK
- KOTO, COMET
- Nuclear physics
- muon g-2/EDM
- · ILC
- Instrumentation development
- \cdot theory

Material and Life Science

Four kinds of quantum beam

- X-ray and positron at Tsukuba
- Neutron and muon at J-PARC

Electron/Positron Accelerators in Tsukuba Campus

SuperKEKB

Asymmetric energy

to produce B-meson pairs at Y(4S), and to measure CP violation in B decays (130µm decay length for 1.5ps lifetime)

Luminosity world record L=4.7 x 10³⁴ cm⁻²s⁻¹ (KEKB record x2.2, PEP-II record x3.9)

New collider technology standard Nano-beam scheme

world smallest vertical beam size at the interaction point (200 nm standard deviation)

Powerful injector linac

to compensate the short beam lifetime due to the narrow dynamic aperture

$$\boldsymbol{L} = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \frac{\boldsymbol{I}_{\pm} \boldsymbol{\xi}_{y\pm}}{\boldsymbol{\beta}_{y\pm}^*} \frac{\boldsymbol{R}_L}{\boldsymbol{R}_{\xi_y}}$$

Belle II Detector

Precision decay vertex reconstruction

Twice better resolution than Belle

Hermetic detector to infer neutrinos

Charged particles with good identification capabilities Good photon resolution, capture K-long mesons

High trigger and reconstruction efficiency

>99% of B decay events are triggered and recorded

531 fb⁻¹ recorded about half of Belle 424 fb⁻¹ before LS1

Long shutdown 1 (LS1)

Full pixel detector installation TOP MCP-PM replacement Data acquisition upgrade

Live streaming at https://evdisp.belle2.org/

Belle II Collaboration

28 countries/regions, 125 institutes, >1100 members including 311 staffs, 125 postdocs, 261 PhD students

Germany as the largest collaborating country

232 members, even more than Japan (!) Major organization roles: institutional board chair and next spokesperson

DESY as the information center of Belle II

Providing most of the collaborative tools (documents, mails, wiki, ...)

Hosted and operated at KEK, Tsukuba,

Pixel Detector

Pixel Detector (PXD) based on the DEPFET technology and German efforts

- 20 ladders (40 modules)
- 8M channels in total
- 75µm sensor thickness

HLL contributions DEPFET sensor and module production

DEPFET pixel sensor

Contributions from HLL, MPP and other institutes mostly in Germany

MPP contributions

Pixel detector mechanics and assembly Vertex detector CO₂ cooling system (IBBelle) Vertex detector installation procedure and tools

DEPFET sensor module

CO₂ cooling system

Detector installation into Belle II

Belle II Physics Highlight

Evidence for $B{\rightarrow} K\,\nu\,\nu$, 2.7 σ compatibility with the SM

This measurement is only possible at Belle II

Level-1 trigger designed for dark sector searches and measurement of HVP contribution to muon g-2

CP violation as the mainstream program of B-factory with major improvements in detector and analysis

 $B \rightarrow J/\psi Ks$ (362fb⁻¹)

Belle II is the place where worldleading searches for Lepton Flavor Violating τ decay can be performed

 $\tau \rightarrow \mu^+\mu^-\mu$ search (424fb⁻¹)

	•
	UL at 90% CL on $B(\tau \rightarrow 3\mu)$
Belle	$2.1 \times 10^{-8} \ (\mathcal{L}_{int} = 782 \text{fb}^{-1})$
BaBar	$3.3 \times 10^{-8} \ (\mathcal{L}_{int} = 468 \text{fb}^{-1})$
CMS	$2.9 \times 10^{-8} \ (\mathcal{L}_{int} = 131 \text{fb}^{-1})$
LHCb	$4.6 \times 10^{-8} \ (\mathcal{L}_{int} = 2.0 \text{fb}^{-1})$
Belle II	$1.9 \times 10^{-8} \; (\mathcal{L}_{int} = 424 \text{fb}^{-1})$

Belle II Prospects

SuperKEKB upgrade in Long Shutdown 2

To overcome the issues on further squeezing the beams and increasing the beam currents To be reviewe

R&D for major redesign of the interaction region is on-going...

Belle II detector upgrade

To improve detector robustness against future high background rate To improve measurement performance for better physics sensitivities...

We need your supports !!

LHC

KEK/Japan Contributions to ATLAS

Muon Detectors

muon drift tube TDC ASIC: 100% End cap trigger (TGC) detector : 30% electronics : 100%

TDC ASIC 20,000 produced

Operation Responsibility

- ~100% for TGC
- 30~40% for SCT

Tile Calorimeter

Liquid Argon Calorimeter

ATLAS Physics Highlight

KEK Contributions Towards HL-LHC

Particle and Nuclear physics at J-PARC

Particle and Nuclear physics at J-PARC

T2K

New results shown at the Neutrino2024 conference

 $\# \mbox{ of } v_e \mbox{ appearance events }$

First constrain	t on lepton CP
asymmetry has	been obtained

	MC for each δ_{CP}				Data
	-π/2	0	π/2	π	Dala
v-mode 1Re	113.2	95.5	78.3	96.0	102
v-mode 1Re+d.e.	10.0	8.8	7.2	8.4	15
v-mode 1Re	17.6	20.0	22.2	19.7	16

NOvA-T2K Loint Analysis

Hyper-K Overview

Civil construction at Kamioka and PMT mass production is in progress.

Hyper-K Expectation

Proton decay search

- → Direct probe for GUT
 - 3σ discovery potential up to $\tau_p \sim 10^{35}$ years
- High statistics samples: ~2300 v_µ → v_e ~1900 v̄_µ → v̄_e are expected in 10 years : Max. 27% effect by CPV (standard 3-flavor model)
- → Discovery (>5σ) potential for
 ~60% of parameter space
- → Measure the size of CPV effect with good precision

 $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3}eV^2/c^4$

Intermediate Water Cherenkov Detector (IWCD)

Novel <u>Movable</u> Water Cherenkov Detector (φ~9m × H~12m) using mPMT

- Key to achieve the 2.7% systematic uncertainty on $R \equiv$
- Progress in securing the detector site
 - Civil construction from JFY 2025~.
 - Detailed facility design based-on the geological survey is in progress.

Your contributions are highly welcome

cf. Large contribution by Aachen and Mainz on T2K near detector

 $\frac{\sigma(v_e)/\sigma(v_\mu)}{\sigma(\bar{v}_e)/\sigma(\bar{v}_u)}$

KOTO : $K_L \rightarrow \pi^0 \nu \bar{\nu}$ search at J-PARC

- **CP-violating rare decay**
- Predicted B.R.(SM)=3x10⁻¹¹
- Not yet observed
- Good probe to search for New physics beyond SM

Highlights in FY2023

➤The analysis of data taken in 2021 provided a new worldbest upper limit B.R.<2.0x10⁻⁹ (preliminary).

≻Upgrades of the beamline, detector, and DAQ system

For better understanding and further reduction of background events ٠

Permanent magnet = No electricity!

COMET : μ -e Conversion Search at J-PARC

- cLFV decay
- No Standard Model BG
- Excellent probe to search for New physics beyond SM
- Key to understand the origin of neutrino mass
- Staging approach
 - Phase I S.E.S. < 10⁻¹⁴
 - Phase II S.E.S. < 10⁻¹⁶

Highlights in FY2023

- ➢First-time beamline operation in Engineering Run. Observation of muons transported through the Muon Transport Solenoid
- ➤Construction of the Pion Capture Solenoid (PCS)
- ≻Detector commissioning on-site

Engineering Run Primary Beamline

PCS construction

CDC in conditioning

Nuclear Physics at Hadron Hall

Many experiments are either on-going or planned under supervision of PAC

- Measurements of mass spectra changes of vector mesons ($\rho,\,\omega,\,\phi$) to study <u>QCD matter</u>
 - $p+A \rightarrow \rho, \omega, \phi + X$ Generate vector mesons <u>using primary proton beam</u> and Detect <u>electron-positron pairs</u> decayed from vector mesons

Mass modifications of $\boldsymbol{\varphi}$ meson due to QCD matter effects

Muon g-2/EDM at MLF

We are looking for collaborators for this new experiment

Acceleration of positive muon to 100 keV (Apr. 2024)

By KEK and IDT (set up under ICFA) initiative, ITN is set up so that ILC related accelerator technology is further developed

	SI	RF
•Creating particles	Sources	
 polarized elections / polarized elections / polarized	ositrons	
 High quality beams 	Damping ring	
 Low emittance beams 		L
 Small beam size (small beam 	spread) Source	ces
 Parallel beam (small moment 	tum spread)	
 Acceleration 	Main linac	
 superconducting radio fi 	requency (SRF)	
•Getting them collided Final	I focus Nan	10-
 nano-meter beams 	Bea	Im
•Go to Beam dumps		

Parameters	Value
Beam Energy	125 + 125 GeV
Luminosity	1.35 / 2.7 x 10 ³⁴ cm ² /s
Beam rep. rate	5 Hz
Pulse duration	0.73 / 0.961 ms
# bunch / pulse	1312 / 2625
Beam Current	5.8 / <mark>8.8</mark> mA
Beam size (y) at FF	7.7 nm
SRF Field gradient	< $31.5 > MV/m (+/-20\%)$ Q ₀ = 1x10 ¹⁰
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)
AC-plug Power	111 / 138 MW

Not only for the **ILC** but also for **various application**

WPP	1	Cavity production
WPP	2	CM design
WPP	3	Crab cavity
WPP	4	E- source
WPP	6	Undulator target
WPP	7	Undulator focusing
WPP	8	E-driven target
WPP	9	E-driven focusing
WPP	10	E-driven capture
WPP	11	Target replacement
WPP	12	DR System design
WPP	14	DR Injection/extraction
WPP	15	Final focus
WPP	16	Final doublet
WPP	17	Main dump

LCWS2024 (Shin MICHIZONO)

Instrumentation Technology Development (ITDC)

Example : Cryogenics and Magnet

Cryogenics Technology Development for below 1K He³ Refrigerator, Enlarge capacity of dilution refrigerator

Goal HEX development

- P1. 2mW@100mK
- P2. Distributing technology

Magnet Development

- Al stabilized superconductor is critical to construct detector solenoid due to its transparency to particles
- Lack of industrial provider will cause serious trouble in next generation projects
- Started cooperative work with CERN to revive and further develop technology
 - We have expertise with strong industrial partnership
- Can be applied to cutting-edge new material superconductor instead of NbTi

30

Test Beam Line at PF-AR

Summary

- Wide variety of Science
 - Focus only on particle/nuclear physics in today's talk
- KEK mission consists of three pillars
 - Particle/nuclear physics, material and life science, application of accelerator technology
- Collaboration with HLL/Max Planck and German institutes is crucially important for KEK science
 - We (not only me but also Shoji Asai) are looking forward further and deeper collaboration with you

Silicon Tracker (ITk)

- Totally new detector
- Area
 - Pixel $2.7m^2 \rightarrow 13.5m^2$
 - Strip $62m^2 \rightarrow 165m^2$
- The number of channels
 - Pixel 90M \rightarrow >5G
 - Strip $6M \rightarrow 60M$

- Finer
 - Pixel size
 - $50 \times 400 \,\mu \,\mathrm{m^2} \rightarrow 50 \times 50 \,\mu \,\mathrm{m^2}$
 - Strip length
 - $20cm \rightarrow 2.4cm$ (shortest)
- ⇒ faster data transfer
- Radiation harder
 - Innermost $1 \times 10^{15} n_{eq}/cm^2 \rightarrow 2 \times 10^{16} n_{eq}/cm^2$ 34

Pixel Module Production Flow

Silicon Strip Sensor

- Japanese responsibility is to provide a half of barrel sensors
- Production of Japanese share finished
 - ► 6350 sensors
- Testing results show all sensor satisfy
 - ▶ bow < 200 µ m</p>
 - deficit strip < 0.1%</p>
- Irradiation at CYRIC, Tohoku U for QA

500 nterstrip resistance [M2] 450 400 350 300 250 200 150 100E 50 0 6 8 10 12 14 16 18

Fluence [×10¹⁴ n_{eq}/cm²]

Nuclear Physics at Hadron Hall

Precise lifetime measurement of ${}^{4}_{\Lambda}$ H hypernucleus using in-flight 4 He(K-, π^{0}) ${}^{4}_{\Lambda}$ H reaction (E73/T77@K1.8BR)

In the coming E73 physics run (FY2024), ${}^{3}_{\Lambda}$ H lifetime will be measured to obtain conclusive result against the hypertriton (${}^{3}_{\Lambda}$ H) puzzle (much shorter lifetime than that of free Λ was obtained in several heavy ion collision experiments in spite of very loosely bound system).

 π^0 is tagged by γ

(monochromatic) π^- from weak decay is measured with CDS.

Previous data: NPA639, 251c (1998) 194-26+24 ps

Nuclear Physics at Wako Campus

· The center has been leading comprehensive studies of rare isotopes with KISS and other devices at RIBF

Muon g-2/EDM measurement

Muon g-2/EDM can be obtained by measuring the muon spin precession in a uniform B-field.

• We can reconstruct time dependent spin information by decayed positron energy and momentum.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
$$\vec{\omega} = \vec{\omega_a} + \vec{\omega_\eta}$$

BNL/FNAL experiment

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(\left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

= 0

- To focus muons in the storage volume, electric field is necessary.
- Magic gamma is selected to cancel out 2nd term.
 - p = 3.1 GeV/c
 - muon orbit : ϕ = 14 m (B = 1.45 T) ³

Muon cooling

Cool surface muons before reacceleration

- Silica aerogel target : Stop surface muons, and thermal muoniums are emitted.
- Laser ablated aerogel for muonium production target.

• 1S-2P excitation by 122 nm or 1S-2S excitation by 244 nm

Muonium

via 1S-2P

Muonium

via 1S-2S