

TIT

Quantum information processing with superconducting circuits

Stefan Filipp Walther-Meißner-Institute Technical University of Munich

HLL Opening Symposium, Garching – Oct 8, 2024

Quantum Computing to solve intractable problems

Many problems in science and business are too complex for classical computing systems!

Challenge:

Realization of a quantum computer with many (1.000.000+) **good qubits** and **high-fidelity gate operations**

Factoring Numbers (Shor's Algorithm) $\frac{1}{\sqrt{2}}$

The problem of multiplication vs factoring:

 $3 \times 5 = ?5$ 29 x 47 = ? 29 x 47 = 1363 \rightarrow easy!

 $35 = 8 \times 7$ $1711 = 29 \times 59$ → hard! Vs . $x 5 = 75$
 $x 47 = 7363$

easy!
 $x = 7363$
 $x = 711 = 29$
 $x = 7$
 $x = 8 \times 7$
 $x = 7$

1024 bit – number:

6840125346266703910299476456048009922209314 998933103029516593144359913530180172201214706 5413209954499422279093750218860993825228288 59285984984603739016398209784379361080852335 622256872463491965682468501271183246657037281 296924729481856693046971954105717213655610120 393542415375408830748739559265912349073090

$= p \times q$

 \rightarrow just short of impossible

Exponential speed-up:

A task taking 300 years (233 seconds) on a classical computer might take a minute (\sim 30 seconds) on a quantum computer

Shor's algorithm jumpstarted interest in quantum computing!

Traveling Salesman Problem (NP hard):

- visit all cities just once
- choose the shortest path
- come back to starting point

 $17 \times ... \times 5 \times 4 \times 3 \times 2 \times 1 = 17! =$ 355'687'428'096'000 possible paths

can be encoded into a quantum physics problem: find the ground-state of a spin (qubit) system, which encodes the optimal path

(at least) quadratic speedup expected

Quantum chemistry - Why is it a challenge? $\frac{1}{\sqrt{2}}$

Electrons can occupy different orbitals in many possible combinations (e.g. in hydrogen H_2)

What are the basic units of information? $\frac{1}{\sqrt{2}}$

Classical Bit Classical Bit Quantum Bit (Qubit)

0 or 1 0 and 1, at the same time represented by point on (Bloch-)Sphere

'superposition'

Bits and Qubits $\frac{1}{\sqrt{2}}$

Bits and Qubits $\frac{1}{\sqrt{2}}$

Bits and Qubits $\frac{1}{\sqrt{2}}$

2 Classical Bits 2 Quantum Bits (Qubits) $\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle$

00, 01, 10, or 11

00, 01, 10 and 11 at the same time with probability $|\alpha|^2$, $|\beta|^2$, $|\gamma|^2$ and $|\delta|^2$ Superposition + Entanglement

 α |0> + β |1>

 α | 0 > + β | 1 >

2 qubits – 4 basis states

 α |00> + β |01> + γ |10> + δ |11>

 α |0> + β |1>

2 qubits – 4 basis states

 α |00> + β |01> + γ |10> + δ |11>

3 qubits – 8 basis states

|000> + |001| + |010> + |011> + ϵ |100> + ζ |101| + η |110> + θ |011>

n qubits – 2*ⁿ* basis states

2^{50} \sim 8 EB (8 million GB)

Basis states of a 50 qubit system:

1125899906842624

²⁷⁵

More basis states than there are atoms in the observable universe

- 1. Initialisierung des Qubitregisters Q_i (z.B. in Grundzustand $|0\rangle$)
- 2. Einzel- und Zwei-Qubit Quantengatter
- 3. Messung des Qubitregisters

What is a qubit? $\frac{1}{\sqrt{2}}$

Quantum Bits:

Two-Level Systems

Example: Atom orbitals with different energetic levels

Neutral Atoms

© JQI

Ion Traps

© Blatt & Wineland

Quantum Dots

Superconducting Circuits

State of the art Quantum Computation

1st quantum computer prototypes are 'on the market' (>100 qubits)

 \rightarrow next milestones: practical quantum algorithm, logical qubits

 \rightarrow many challenges ahead (scaling, coherence, control & readout, system integration)

Superconducting Qubits $\frac{1}{\sqrt{2}}$

|0⟩

200 nm

|1⟩

Features:

- § quantized non-linear superconducting circuits
- typical frequencies: $5 10$ GHz (microwave range)
- fast gates on ns timescales
- high fidelity gate operations (> 99.9% two-qubit gates)
- § scalable fabrication technology

NISQ applications $\frac{1}{\sqrt{2}}$

Quantum chemistry: calculate ground state of simple molecules (hydrogen chain)

- F. Arute, Science 369, 2020;
- A. Kandala, Nature 549 (2017); Nature 567 (2019)]

Material science: dynamics of spin systems (with up to 127 qubits)

Y. Kim et al. (IBM), Nat. Phys 1 (2023); Nature (2023)

IBM Q Experience $\mathbf{n}\mathbf{m}$ $Q \qquad Q$ **IBM Quantum Services** ibmq_kolkata Services \leftarrow You do not have access to this system To learn more about access options, click here $[\![\vec{\mathcal{E}}]\!]$ **Details** Qubit: Avg. CNOT Error: 8.278e-3 • Online つワ Avg. Readout Error: 1.214e-2 Total pending jobs: 1 iob Single-qubit Pauli-X error \checkmark 129.66 us Avg. T1: Processor type (i): Falcon r5.11 1 2 6 $1.8.0$ Avg. T2: 123.75 us Avg 2.762e-4 CX, ID, RZ, SX, X Providers with Basis gates: our usage: min 1.292e-4 max 8.844e-4 Your upcoming reservations **Calibration data** Last calibrated: 2 hours ago \[128 Quantum volume Connection: **田** Table view ດ Map view **LLLI** Graph iew Qubit: **CNOT** error \checkmark Single-qubit Pauli-X error \quad \sim Avg 2.762e-4 Avg 8.278e-3 $65_°$)ubits 32 Quantum volume min 1.292e-4 max 8.844e-4 0 = 1 = 4 = 7 = 10 = 12 = 15 = 18 = 21 = 23 min 3.838e-3 max 2.391e-2 Connection: CNOT error $6 = 8 = 11 = 14 = 16 = 19 = 22$ $\sqrt{25}$ = 26 Avg 8.278e-3 20 min 3.838e-3 max 2.391e-2 16 Qubits 32 Quantum volume 27 Qubits 32 Quantum volum

The Universal Quantum Computing System

QEC – lowering logical error rates $\frac{1}{\sqrt{2}}$

Surface Code error threshold:

Logical error should decrease for increasing number of physical qubits per logical qubit

[R. Acharya et al., Nature (2023); Google AI, Nature (2024)]

 \rightarrow Stabilization of logical qubit below error threshold (distance 7 code)

 \rightarrow still much larger codes needed (1000's of qubits)

Challenges ahead (hardware centric)

Scaling: *guarantee performance at scale*

cross-coupling and cross-talk, uniformity & reproducibility, scalable control, I/O, size of qubits, thermal budget

System: *guarantee stable operation conditions*

automated calibration & bring-up, run-time environment, characterization & verification, quantum/classical integration, (cryogenic) electronics,…

Coherence: maximize lifetime of quantum states

identification of loss channels and noise sources (two-level fluctuators, quasi-particles,B-field fluctuations), mitigation (by design, by choice of materials, by fabrication)

Control & readout: coherence-limited high-fidelity gates pulse optimization, benchmarking sequences, multi-qubit operations & extended gate sets,…

Superconducting qubits – trend of coherence times $\frac{1}{\sqrt{2}}$

Kjaergaard et al. Ann. Rev. Cond. Mat Phys 11 (2020);

HLL Opening Symposium| Oct 8, 2024 I Stefan Filipp – sfilipp@wmi.badw.de

Microscope image of qubit chip

Fermi's golden rule $\widetilde{\overline{\text{WM}}}$

Fermis golden rule describes the decay rate from an excited state Ψ_1 to ground state Ψ_0

J. Lisenfeld *et al.*, npj Quantum Inf **5,** 105 (2019); C. Müller et al. Rep. Prog. Phys. **82** (2019)

- Transition matrix element from perturbation (environment, TLSs, flux noise,…), can be modified in design
- density of states of the environment (TLSs,…) at transition frequency; one of the main challenges in fabrication

Clean Interfaces

Surface clean (piranha, BOE)

- \rightarrow dissolves organic contaminations
- \rightarrow removes native SiO_x layer

 \rightarrow 150nm Nb thin-film at optimized temperature

Pattern transfer via reactive ion etching \rightarrow steep side walls, low line edge roughness, low damage and roughness of substrate surface \rightarrow via SF₆ based ICP RIE process

Post-lithography cleaning

 \rightarrow remove SiO_x layer in trenches and NbO_x layer

Internal quality factors of CPW resonators (single photon limit)

 $\mathbf{n}\mathbf{m}$

Niobium coplanar waveguide resonators (4-8 GHz; 6 µm gap; 10 µm center width)

 $\frac{1}{\sqrt{2}}$

measured **directly** after post process cleaning $Q_{int, avg} = 8.8 \pm 2.2 \times 10^6$ $Q_{int,max} = 11.7 \pm 0.4 \times 10^6$

fully **oxidised** after ten days at atmosphere: $Q_{int, avg} = 3.8 \pm 1.4 \times 10^6$ $Q_{int,max} = 6.2 \pm 1.0 \times 10^6$

- Fixed-frequency single transmon qubits (frequency around 4.4 GHz
- Al/AlO_x/Al Josephson junctions with Niobium ground plane

HLL Opening Symposium| Oct 8, 2024 I Stefan Filipp – sfilipp@wmi.badw.de

$T T T T$

Superconducting qubits – trend of coherence times

Kjaergaard et al. Ann. Rev. Cond. Mat Phys 11 (2020);

 $\frac{1}{\sqrt{2}}$

HLL Opening Symposium| Oct 8, 2024 I Stefan Filipp – sfilipp@wmi.badw.de

Challenges ahead (hardware centric)

Scaling: *guarantee performance at scale*

cross-coupling and cross-talk, uniformity & reproducibility, scalable control, I/O, size of qubits, thermal budget

System: *guarantee stable operation conditions*

automated calibration & bring-up, run-time environment, characterization & verification, quantum/classical integration, (cryogenic) electronics,…

Coherence: maximize lifetime of quantum states

identification of loss channels and noise sources (two-level fluctuators, quasi-particles,B-field fluctuations), mitigation (by design, by choice of materials, by fabrication)

Control & readout: coherence-limited high-fidelity gates pulse optimization, benchmarking sequences, multi-qubit operations & extended gate sets,…

Scalability challenge 1:

Can one retain the coherence & controllability for larger devices? E.g. How to address all qubits and cross over signal lines?

→ **Air-bridge technology** for routing of signals & for connecting ground planes

HLL Opening Symposium| Oct 8, 2024 I Stefan Filipp – sfilipp@wmi.badw.de

→ **Indium bump bonds** to separate qubit/coupler layer from signal routing layer

Scalability challenge 2: Can one reduce the footprint of qubits/couplers?

→ **Air-gap capacitors** for smaller qubits (with decent coherence times)

Challenges ahead (hardware centric)

Scaling: *guarantee performance at scale*

cross-coupling and cross-talk, uniformity & reproducibility, scalable control, I/O, size of qubits, thermal budget

System: *guarantee stable operation conditions*

automated calibration & bring-up, run-time environment, characterization & verification, quantum/classical integration, (cryogenic) electronics,…

Coherence: maximize lifetime of quantum states

identification of loss channels and noise sources (two-level fluctuators, quasi-particles, B-field fluctuations), mitigation (by design, by choice of materials, by fabrication)

Control & readout: high-fidelity quantum operations pulse optimization, benchmarking sequences, **multi-qubit operations & extended gate sets,…**

\mathbf{m}

Simultaneous multi-qubit operations

multi-qubit and non-local operations **efficient state transfer along chains**

Petar et al., QS&T 6 (2021)

Gu et al., PRX Quantum 2 (2021) Burkhart et al., PRX Quantum 2 (2021) Zhang et al., PRL 128 (2022) Warren et al., arXiv 2207.02938 (2022) **Glaser et al., PR Applied 19 (2023)** Kim et al., Nature Physics 1 (2022) Baker et al., Appl PL 120 (2022) Lu et al., PRX Quantum 3 (2022)

Christandl et al., PRL 92 (2004) Li et al., PRApplied 10 (2018) Genest et al., Annals of Physics 371 (2016) Lemay et al., JPA 49 (2016) **Nägele et al., PR Research 4 (2022)**

- 6 fixed-frequency **transmons**, individual **drive lines**.
- 6 **resonators**, 2 **feedlines**.
- 6 **tunable-couplers**, individual **flux lines**.

Perfect state transfer (PST) of single excitations $\frac{1}{\sqrt{2}}$

GHZ-state preparation: based on single multi-qubit unitary transformation

[F. Roy, J. Romeiro et al. arXiv:2405.19408 (2024)]

Outlook: a new playground with 17 qubits $\frac{1}{\sqrt{2}}$

Operation of a 17 qubit processor (transmon-based)

Munich Quantum Valley / MUNIQC-SC $\frac{1}{\sqrt{2}}$

Strategy for the Bavarian Quantum Roadmap

- Center for Q-computing & technologies
- Funding of flagship projects
	- Developing quantum computers

1

Q-technology park

- Deep-tech infrastructure
- Open for universities, start-ups, companies,…
- Connected to Fraunhofer EMTF & Max Planck Semiconductor Labs
- 3 Q-workforce
	- **Education**
	- **Recruiting**
	- **Outreach**

Grand Challenge: Quantum Computing

Overcome the challenges in controlling large scale quantum systems…

… to solve problems that are otherwise intractable and to explore new physics!

