MPG HLL Inauguration Ceremony and Semiconductor Symposium

7-8 Oct 2024 **Science Congress Center Munich**

Superconducting circuits in axion dark matter search: microwave photon counting with transmon qubits

Caterina Braggio University of Padova and INFN quantum science technologies (QST) in particle physics

- the role of quantum science and technology in **fundamental physics**
- =⇒ **beyond standard model (BSM)** physics
	- \odot matter-antimatter asymmetry
 \odot dark matter
	- ⊙ dark matter
	- ⊙ CP violation in QCD
	- ⊙ . . .
- feeble interactions with SM particles (or none at all)
- \implies sensing is the most consolidated QST, with enormous potential to **increase the sensitivity** of our experiments

Ouantum Technologies's primary areas of work, © UE

QUANTUM SENSING: a definition

A quantum machine is a device whose **degrees of freedom** are **intrinsically quantum mechanical** S. M. Girvin, *Les Houches Circuit QED lectures*

QUANTUM SENSING: a definition

A quantum machine is a device whose **degrees of freedom** are **intrinsically quantum mechanical** S. M. Girvin, *Les Houches Circuit QED lectures*

→ Examples of **classical machines**, because their **operational degrees of freedom are purely classical**

QUANTUM 2.0

"Quantum sensors are individual systems or ensembles of systems that use **quantum coherence**, **interference** and **entanglement** to determine physical quantities of interest." *Rev. Mod. Phys. 89, 035002 (2017)*

"A device whose measurement (sensing) capability is enabled by our ability to **manipulate and readout its quantum states**." *M. Safranova and D. Budker*

HERRICH STRAIN STRAIN

QUANTUM 2.0

Quantum sensors have been realised in **multiple physical systems with very different operating principles**.

Superconducting circuits Solid-state spins Atomic ensembles

It might take some more time to adapt them in real-world settings, but **they are already in use in the lab**. Applied to problems in which **significant** gain (up to 1000s) compared to conventional detectors is required.

QUANTUM MICROWAVES in DM search

 $(0.1-2) W$

 $2.5\times10^{-21}\,\mathrm{W}$

quantum microwaves in DARK MATTER search

 $< 10^{-23}$ W Unknown frequency (particle mass)

$$
\langle {\rm few~photons/s} \quad \square \rangle \quad \boxed{\text{QUANTUM 2.0}}
$$

イロトイタトイミトイミト ミニクダウ

"wave-like" DM

measurement techniques. In particular, for models interacting with the standard model on the standard model on individual particles scattering off a detector **number, massive mechanical sense** $m \gtrsim 10 \text{ eV}$

"wave-like" DM

classical field oscillating at the Compton frequency 10^{−6} coherence $m \leq 10$ eV

 $A \equiv A \equiv A$ $A \equiv A \equiv A$ $A \equiv A \equiv A$

4

- 1. **3D** microwave **resonator** for resonant amplification -think of an HO driven by an external force-
- 2. with **tunable frequency** to match the axion mass (δν*^c* ∼ MHz, target 100 MHz range at KSVZ)
- 3. the **resonator** is within the bore of a **SC** magnet \rightarrow **B**₀ multi-tesla field
- 4. it is readout with a **low noise receiver** delfridge operation at mK temperatures

quantum-limited readout

$$
k_B T_{sys} = h\nu \left(\frac{1}{e^{h\nu/k_B T}-1} + \frac{1}{2} + N_a\right), N_a \geqslant 0.5
$$

 $T_{sys} = T_c + T_a$ *T^c* cavity physical temperature *T^a* effective noise temperature of the amplifier

a poor S/N ratio

In these searches, **the signal is much smaller than noise**

 $P_n = k_B T \Delta \nu \gg P_s \propto B^2 V_{\text{eff}} Q_L \sim 10^{-23} \text{ W}$

To increase sensitivity we rely on **averaging several spectra** recorded at the same cavity frequency **over a certain integration time**.

Heavier (axions) & Harder (life)

⊙ heavier axions are well motivated, **BUT** the *scan rate df* /*dt scales unfavourably with f* 4 $-4 - 2$

$$
\frac{df}{dt} \propto \frac{g_{a\gamma\gamma}^4 B^4 V_{\text{eff}}^2 Q_L}{T_{\text{sys}}^2} \propto f^{-4}
$$

(asm. quantum noise, SC cavities, relax *r*/*L*)

⊙ (*df* /*dt*)*DFSZ* ∼ **50** (*df* /*dt*)*KSVZ*

- $\begin{array}{rcl}\n\longrightarrow & \text{new cavities with larger } V_{\text{eff}} \\
\text{pill-box cavity} \\
\longrightarrow & \text{QIS technologies and methods to reduce the noise} \\
\text{(pizza cavity)} \\
\longrightarrow & \text{QIS technologies and methods to reduce the noise}\n\end{array}$ pill-box cavity
	- (parametric amplifiers, photon counters)

photon counting vs parametric amplification at standard quantum limit (**SQL**)

IDEAL PHOTON DETECTOR

$$
\frac{R_{\text{counter}}}{R_{\text{SQL}}} \approx \frac{Q_L}{Q_a} e^{\frac{h\nu}{k_B T}}
$$

Ex. at 7 GHz, $40 \text{ mK} \rightarrow \text{gain}$ by 10^3 [S. K. Lamoreaux](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.035020) *et al.*, Phys Rev D **88** 035020 (2013)

REAL DETECTOR WITH DARK COUNTS Γ*dc*

$$
\frac{R_{\text{counter}}}{R_{\text{SQL}}} \approx \eta^2 \frac{\Delta \nu_a}{\Gamma_{dc}}
$$

Γ*dc* dark counts

 η photon counter efficiency ∆ν*^a* axion linewidth

$$
\rightarrow
$$
 (×100s) gain [Γ_{dc} ~ 10s count/s, η^2 ~ 70%]

- can probe in a day the same range a linear amplifier at SQL would take more than 3 months-

https://arxiv.org/abs/2403.02321

イロト イ押 トイミト イミト・ミニ りなべ

SMPDS in the microwave range

Detection of individual microwave photons is a challenging task because of their **low energy** e.g. $h\nu = 2.1 \times 10^{-5}$ eV for $\nu = 5$ GHz

Requirements for dark matter search:

- detection of *itinerant photons* due to involved intense **B** fields
- lowest dark count rate Γ < 100 Hz
- \circ ≥ 40 50% efficiency
- large "dynamic" bandwidth ∼ cavity tunability

DETECTION OF QUANTUM MICROWAVES

The detection of individual **microwave photons** has been pioneered by **atomic cavity quantum electrodynamics experiments** and later on transposed to **circuit QED experiments**

Nature 400, 239-242 (1999)

Nature 445, 515-518 (2007)

In both cases **two-level atoms** interact directly with a **microwave field mode** in the cavity

Cavity-QED for photon counting

Can the field of a single photon have a large effect on the artificial atom?

Interaction: $H = -\vec{d} \cdot \vec{E}$, $E(t) = E_0 \cos \omega_a t$

It's a matter of increasing the **coupling strength** g between the atom and the field $g = \vec{E} \cdot \vec{d}$:

- → work with **large atoms**
- \rightarrow **confine the field** in a cavity

$$
\vec{E} \propto \frac{1}{\sqrt{V}}, \ V \text{ volume}
$$

 κ rate of cavity photon decay γ rate at which the qubit loses its excitation to modes \neq from the mode of interest

 $g \gg \kappa, \gamma \iff$ regime of strong coupling coherent exchange of a field quantum between the atom (matter) and the cavity (field)

from cavity-QED to circuit-QED

g is significantly increased compared to Rydberg atoms:

- \rightarrow artificial atoms are large (\sim 300 μ m) =⇒ large dipole moment
- \rightarrow \vec{E} can be tightly confined $\vec{E} \propto \sqrt{1/\lambda^3}$ $\omega^2 \lambda \approx 10^{-6}$ cm³ (1D) versus $\lambda^3 \approx 1$ cm³ (3D) \Longrightarrow 10⁶ larger energy density

(ロ) (@) (코) (코) (코) 2000

and generation of highly entangled 2 and 3-qubit states \mathcal{C} and 3-qubit states \mathcal{C}

(a) $(g/2\pi)_{\text{cavity}} \sim 50 \,\text{kHz}$ \mathcal{L} is standing wave electric field in red. Typical dimensions are indicated. The indicated indicated \mathcal{L} **(b)** $(g/2\pi)_{\text{circuit}} \sim 100 \text{ MHz (typical)}$ 10⁴ larger coupling than in atomic systems

Jaynes-Cummings model

Interaction of a **two state system** with **quantized radiation in a cavity**

$$
\mathcal{H}_{\text{JC}} = \frac{1}{2}\hbar\omega_q\hat{\sigma}_z + \hbar\omega_r\hat{a}^\dagger\hat{a} + \hbar g(\hat{a}\hat{\sigma}_+ + \hat{a}^\dagger\hat{\sigma}_-)
$$

Parameter space diagram for cavity-QED

− ω*^r* ∼ ω*^q resonance* case − ∆ = |ω*^r* − ω*q*| ≫ *g dispersive limit* case

(ロ) (@) (코) (코) (코) 2000

Dispersive regime of detuning *g*/∆ ≪ 1

$$
\hat{H}_{\text{JC}}^{\text{eff}} = \hbar \omega_r \hat{a}^\dagger \hat{a} + \frac{\hbar \omega_q'}{2} \hat{\sigma}_z + \frac{\hbar \chi \hat{a}^\dagger \hat{a} \hat{\sigma}_z}{2}
$$
\n
$$
= (\hbar \omega_r + \frac{\hbar \chi \hat{\sigma}_z}{2}) \hat{a}^\dagger \hat{a} + \frac{\hbar \omega_q'}{2} \hat{\sigma}_z
$$
\n
$$
= \hbar \omega_r \hat{a}^\dagger \hat{a} + \frac{\hbar}{2} (\omega_q' + \frac{\chi}{2} \hat{a}^\dagger \hat{a}) \hat{\sigma}_z
$$

 $\chi = \frac{g^2}{\Lambda}$ ∆

 $\rightarrow \hbar \chi \hat{\sigma}_z$ dispersive qubit state readout

 $\rightarrow 2\chi a^{\dagger} a$ number splitting

- \rightarrow **qubit frequency** is a function of the **cavity photon number**
- → measuring the **qubit frequency** is equivalent to measuring the **number of photons** in the cavity

cavity photon detector

CAVITY PHOTONS

itinerant vs *cavity* photon detector in axion experiments

transmon-based detectors do not tolerate intense B fields

 \rightarrow in axion detection, itinerant photon detection is preferred, as the SMPD is located in a region **where it can be screened by the B field** (but anyway at the MC stage)

イロト イ押 トイミト イミト・ミニ りなべ

TRAVELING QUANTUM MICROWAVES

Phys. Rev. X 10, 021038 (2020) ← 1.3 counts/ms Nature **600**, 434–438 (2021) ← spin fluorescence detection Nature **619**, 276–281 (2023) ← single spin flip Phys. Rev. Appl. 21, 014043 (2024) $\leftarrow 85$ counts/s

- ⊙ wave mixing (4WM) process: the incoming photon is converted into an excitation of the qubit
- ⊙ readout of the qubit state with quantum information science (QIS) methods
- \odot efficiency $n \sim 0.5$, dark counts $\Gamma_d \sim 85 \,\mathrm{s}^{-1}$
- \odot ~ 100 MHz tuning range
- \odot on/off resonance \rightarrow monitor the dark counts, which set the background in these experiments

HERRICH STRAIN STRAIN

 $\omega_b + \omega_p = \omega_q + \omega_w$

https://arxiv.org/abs/2403.02321

EXP SETUP

- ⊙ a **transmon-based** single microwave photon detector (SMPD) is used to readout the cavity mode
- ⊙ TWPA for dispersive readout of the qubit state
- ⊙ hybrid (normal-superconducting) cavity *TM*⁰¹⁰ at 7.37 GHz **tunable** by a triplet of rods $Q_0 = 9 \times 10^5$ at 2 T-field
- \cap T=14 mK @ fridge Quantronics lab (CEA, Saclay)
- \rightarrow investigated the background, and set a limit to *ga*γγ [0.5 MHz band]

SMPD (top) and cavity

SC magnet

- \rightarrow 2 RF lines more than plain JPA/TWPA cavity readout
- \rightarrow dilution refrigerator base temperature must not exceed ∼ 20 mK

 \rightarrow used only passive screening due to the relatively low field employed ($B = 2$ T). Bucking coil necessary to run at higher fields.

イロト イ押 トイヨ トイヨ トー \equiv Ω readout protocol: the SMPD is operated through **nested cycles**

 \implies multi-core pulse processing unit (OPX+): classical calculation and quantum control pulses in real time

- \rightarrow basic block (d) is detection + qubit readout \sim (10 + 2) μ s
- \rightarrow measure SMPD efficiency and cavity parameters
- \rightarrow control the nanopositioner for cavity frequency tuning
- \rightarrow monitor dark counts under different conditions: at resonance $\omega_h = \omega_c$ and at 4 sidebands $\omega_b = \omega_c \pm 1$ MHz, $\omega_b = \omega_c \pm 2$ MHz

HERRICH STRAIN STRAIN

How long can we integrate to improve S/N?

- \odot counts at $\omega_b = \omega_c$ registered in a time interval of 28.6 s (set by readout protocol structure) ⇐⇒ **average** ∼ 90 **Hz dark count rate**
- ⊙ both the counts at resonance and on sidebands $\omega_b = \omega_c \pm 1.2$ MHz vary **beyond statistical uncertainty** expected for poissonian counts
- ⊙ notice a **correlation** between the two channels
- ⊙ and a systematic **excess** at cavity frequency \rightarrow the cavity sits at a higher T

https://arxiv.org/abs/2403.02321

Long-term stability

We compute the Allan variance to assess the long term stability of the detector

- \rightarrow counts fluctuations decrease as $1/\tau$, up to a maximum observation time τ*^m* of about 10 min
- \rightarrow for $\tau > \tau_m$ the Allan variance increases \rightarrow system drifts
- $\rightarrow \;$ the differential channel follows the $1/\tau$ trend up to a longer time interval $\tau \sim 30 \,\rm{min} \rightarrow \rm{small}\,\rm{correlation}$
- \rightarrow no additional noise in the data recorded between successive step motion intervals compared to unperturbed cavity

beyond SMPD diagnostics: UPDATING THE EXCLUSION PLOT FOR *ga*γγ

- → data analysed in 420 kHz ≃ 14∆ν*^c* range
- \rightarrow reached the extended OCD axion band with a short integration time (10 min), in spite of the small B-field
- ⊙⊙ **x20 gain [conservative]** in scan speed vs linear amplifiers https://arxiv.org/abs/2403.02321

(ロ) (@) (코) (코) (코) 2000

beyond cavity haloscopes: DIELECTRIC HALOSCOPES

arXiv:2409.11777v1 [hep-ex] 18 Sep 2024

→ extend TWPAs and microwave photon counting technologies to frequencies **above 10 GHz**

HERRICH EXTERNIE VOLG

WRAP UP

- ⊙ lab-scale, tabletop vs conventional "scaling up" approach
- ⊙ importing metrological methods from QIS in particle physics → J(TW)PA, SMPD *to increase the sensitivity of our experiments*
- ⊙ there is room for further improvement: → *circuit design and fabrication, extension to higher frequencies*
- ⊙ new instruments are new fundamental physics probes

QUAX @INFN LNL

Istituto Nazionale di Fisica Nucleare

Quantronics Group

Research Group in Quantum Electronics, CEA-Saclay, France SMPD design, fabrication and tests

N. Roch group in Grenoble (TWPAs)

イロトイタトイミトイミト ミニウムペ

SQL IN LINEAR AMPLIFICATION

The quantum noise is a consequence of the base that we want to use to measure the EM field in the cavity. A **linear amplifier** measures the amplitudes in phase and in quadrature. Any narrow bandwidth signal $\Delta \nu_c \ll \nu_c$ can in fact be written as:

$$
V(t) = V_0[X_1 \cos(2\pi\nu_c t) + X_2 \sin(2\pi\nu_c t)]
$$

=
$$
V_0/2[a(t) \exp(-2\pi i\nu_c t) + a^*(t) \exp(+2\pi i\nu_c t)]
$$

$$
X_1 \text{ and } X_2 \text{ signal quadratures}
$$

LINEAR AMPLIFIER READOUT

Alternatively, with $[X_1, X_2] = \frac{i}{2}$ the hamiltonian of the HO is written as:

$$
\mathcal{H} = \frac{h\nu_c}{2}(X_1^2 + X_2^2)
$$

PHOTON COUNTER: measuring *N*

 $a, a^* \to$ to operators a, a^{\dagger} with $[a, a^{\dagger}] = 1$ and $N = aa^{\dagger}$ Hamiltonian of the cavity mode is that of the HO:

$$
\mathcal{H} = h\nu_c \left(N + \frac{1}{2} \right)
$$

Photon counting is a game changer (high frequency, low T): in the **energy eigenbasis** there is no intrinsic limit

HERRICH STRAIN STRAIN