SDDs in Astroparticle Physics

Prof. Dr. Susanne Mertens Technical University Munich

What is our universe made of ?

70%: dark Energy

26% dark matter

5% atoms

Dark Matter Candidates

Neutrinos

Sterile Neutrinos

Standard Model (SM)

n-Minimal Standard Model

L. Canetti, M. Drewes, and M. Shaposhnikov, PRL **110** 061801 (2013)

Dark Matter Sterile Neutrinos

Experimental searches

Imprint of sterile v' s on ß-spectrum

KATRIN

- **Experimental site: Karlsruhe Institute of Technology (KIT)**
- **International Collaboration (150 members)**
- **Main goal: direct measurement of the neutrino mass with 0.3 eV sensitivity**

Tritium source

- 100 μ g of gaseous T₂
- 10^{11} T₂ decays/s

Tritium source

- 100 μ g of gaseous T₂
- 10^{11} T₂ decays/s

Transport section

- Guidance of electrons
- Removal of tritium

Tritium source

- 100 μ g of gaseous T₂
- 10^{11} T₂ decays/s

Transport section

- Guidance of electrons
- Removal of tritium

Spectrometer

- Electrostatic filter
- MAC-E filter principle

Tritium source

- 100 μ g of gaseous T₂
- 10^{11} T₂ decays/s

Transport section

- Guidance of electrons
- Removal of tritium

Spectrometer

- Electrostatic filter
- MAC-E filter principle

Detector

- Counts electrons
- Rate vs potential

Data set:

- 250 days of data (5 campaigns)
- 63 Mio electrons

Result:

- Best fit: $m_{\nu}^2 = \left(-0. \, 14^{+0.13}_{-0.15}\, \right)$ eV 2 (stat. dom.)
- New limit: $m_{\nu} < 0$. 45 eV (90% CL) Neutrino-24 (2024) arXiv:2406.13516 (2024)

Final goal (in 2026):

• m_{ν} < 0.3 eV (90% CL)

Extending KATRIN

 10^{11} decays/s

Extending KATRIN

 10^{11} decays/s

A novel detector system

Mertens et. al. JCAP 1502 (2015)

Detector Requirements

Detector Requirements

Silicon Drift Detector (SDD)

\checkmark Small readout contact

- \triangleright Small detector capacitance \rightarrow Low noise (good resolution) for high rates
- \checkmark Large detector area
	- \triangleright Large area coverage, not too many pixels
- \checkmark Integrated amplification (nJFET)
	- \triangleright Focal plane arrangement

Challenges

- o Large pixel number
- o Focal plane configuration
- o Operation at high magnetic field and high vacuum
- \circ Ultra-precise beta spectroscopy

> 1000 pixel SDD 9 - 21 modules (each 166 pixel)

A long SDD journey…

A long SDD journey…

Characterization Optimization Integration

X-ray characterization

Excellent performance demonstrated J. Phys. G46 (2019)

- \checkmark energy resolution
- \checkmark noise characteristics
- \checkmark linearity

Electron spectroscopy

TRISTAN Hot Cathode (THC) E-gun

- \checkmark mono-energetic electrons with kinetic energy up to 30 keV
- \checkmark electron rates up to 100 kcps per pixel
- \checkmark illumination of the area of one TRISTAN detector module (40 × 38 mm2).

K. Urban et al, JINST **19** P06004 (2024)

Electron spectra

 \checkmark High statistic electron spectra

 10 nm

 $SiO₂$

 \checkmark Good agreement of model with data

 29×10 nm

 \vert Si \vert

449.7 µm

Si

K. Urban et al 2022 JINST 17 C09020 A. Nava et al, NIM-A 1046, 167812 (2023)

Backscattering

- \checkmark Measurement of backscattering coefficient with two detectors
- \checkmark Good agreement with simulations

D. Spreng et al. arXiv:2405.12776 (2024)

Pulsed light source

- Laser or LED (λ = 630 nm)
- Interaction in entrance window + small spot size + timing

Pulsed light source

 \checkmark Good understanding of drift times (incl. diffusion and repulsion)

 \checkmark Good description of charge sharing

C Forstner et al, ArXiv:2409.08901 (2024)

A long SDD journey…

Characterization Optimization Integration

- 1. Epitaxial growth to reduce deadlayer
	- \checkmark First tests look promising

25

 $30[°]$

100

80

- 1. Epitaxial growth to reduce deadlayer
	- \checkmark First tests look promising
- 2. Optimized trace layout to reduce x-talk between pixels
	- \checkmark Significant reduction of cross-talk in final production

- 1. Epitaxial growth to reduce deadlayer
	- \checkmark First tests look promising
- 2. Optimized trace layout to reduce x-talk between pixels
	- \checkmark Significant reduction of cross-talk in final production

Lines more narrow and shifted, additional grounding, improved bond pad design

 0.10

- 1. Epitaxial growth to reduce deadlayer
	- \checkmark First tests look promising
- 2. Optimized trace layout to reduce x-talk between pixels
	- \checkmark Significant reduction of cross-talk in final production
- 3. Improved nJFET layout to eliminate charge loss \checkmark No more charge-losses observed

A long SDD journey…

Characterization Optimization Integration

Assembly procedure

Final TRISTAN Module

 4 cm

166-pixel SDD with

 $20 \overline{cm}$

Ettore ASICs

Rigid flex PCB carrying 400 signal lines

integrated JFET Silicon carbide (CeSic) cooling link on copper cooling block

Final TRISTAN Module

- \checkmark Among the largest monolithic SDD ever operated \circledcirc
- \checkmark All pixels working (not always...)
- \checkmark Average resolution of 160 eV (FWHM) at 6 keV
- \checkmark Homogeneous performance

Integration

D. Siegmann *et al* 2024 *J. Phys. G: Nucl. Part. Phys.* **51** 085202

Dark Matter Candidates

The strong CP (charge parity) problem

- Quantum Chromodynamics (QCD) predicts an electric dipole moment of the neutron (nEDM)
- Experiments do not observe any nEDM
- Responsibe term θ_{OCD} $\tilde{G}^{\mu\nu}G_{\mu\nu}$ must be set to zero

The pool table analogy

Axions

QCD vacuum potential

Axion is like a photon with a small mass

Experimental searches

IAXO X-ray detector

Requirements:

- High efficiency for $1 10$ keV x-rays
- Good energy resolution
- No/little cooling, flexible footprint

IAXO X-ray detector

Requirements:

- High efficiency for $1 10$ keV x-rays
- Good energy resolution
- No/little cooling, flexible footprint

IAXO X-ray detector

Requirements:

- High efficiency for $1 10$ keV x-rays
- Good energy resolution
- No/little cooling, flexible footprint

Challenge:

- o Background level of **10-7 cts/keV/cm2/s**
	- \triangleright Never achieved in above-ground laboratory

TAXO demonstrator

 \checkmark Measurements at Can Franc underground lab

TAXO demonstrator

 \checkmark Measurements at Can Franc underground lab

 \checkmark Above-ground measurements in preparation

Summary

SDDs are highly useful to Astroparticle physics

\checkmark TRISTAN:

High-precision β -spectroscopy with SDDs enables new physics searches, e.g. dark matter sterile neutrino

√ IAXO:

Ultra-low background SDDs enable rare event searches, e.g. for solar axions

Thanks for your attention

Thanks to the HLL team, and especially to Peter and Jelena!

Prof. Dr. Susanne Mertens Technical University Munich