One-loop electroweak Sudakov logarithms: automation and applications

Marco Zaro

MILANO

Joint Max-Planck \& TUM seminar
17/07/2024

MAX-PLANCK-INSTITUT
FÜR PHYSIK

LHC is running (again)!

Marco Zaro, I7-07-2024

Standard Model Production Cross Section Measurements
Status: February 2022

A beautiful theory

- The Standard Model encloses our current knowledge of fundamental interactions
- It is a complete theory, and successfully explain phenomena over a vast range of scales (from low-energy QED to the largest energy scales we can probe)

$$
\begin{array}{lcl}
\text { Electron g-2 } & \downarrow 10^{-12} \\
g / 2=1.001 & 15965218073(28) & {[0.28 \mathrm{ppt}] \text { (measured) }} \\
g(\alpha) / 2=1.00115965217760(520) & {[5.2 \mathrm{ppt}] \text { (predicted). }}
\end{array}
$$

- Its Lagrangian can be cast in a very compact form

New Physics?

New Physics?

- We (still) believe that new physics must exist
- What is Dark Matter made of?
- Where is all the anti-matter in the universe?
- Why do particles have such innatural masses?

New Physics?

- We (still) believe that new physics must exist
- What is Dark Matter made of?
- Where is all the anti-matter in the universe?
- Why do particles have such innatural masses?
- New physics must be hiding very well!

- Change of paradigm: from bump hunting to precision measurements

Precision for measurements

- Our ability to make measurements and discoveries is limited by the goodness of our theory predictions
- Higgs physics gives a clear example: the dominant production channel receives large perturbative corrections
- Without the inclusion of higher orders, ggF measured rate would be $3 * \mathrm{SM}$
- Exp. measurements are very competitive already now!

extracted signal strength (assuming SM)
2.99

How do we do precision calculations?

- We cannot solve exactly the SM Lagrangian: use perturbation theory
- QCD factorisation theorem

$$
\sigma_{p p \rightarrow X}(s)=\sum_{a b} \int d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}=x_{1} x_{2} s\right)
$$

How do we do precision calculations?

- We cannot solve exactly the SM Lagrangian: use perturbation theory
- QCD factorisation theorem

$$
\sigma_{p p \rightarrow X}(s)=\sum_{a b} \int_{\substack{\text { Probability of finding a parton } \\ \text { into the proton } \\ \text { Parton distribution functions: } \\ \text { must be fit to data, process } \\ \text { independent }}}^{d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}^{2}=x_{1} x_{2} s\right)}
$$

How do we do precision calculations?

- We cannot solve exactly the SM Lagrangian: use perturbation theory
- QCD factorisation theorem

$$
\left.\sigma_{p p \rightarrow X}(s)=\sum_{a b} \int d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}^{\text {Probability of finding a parton }} \begin{array}{cc}
\text { into the proton }
\end{array} \quad \begin{array}{c}
\text { Probability that two partons } \\
\text { scatter into a given final state }
\end{array}\right\} x_{1} x_{2} s\right)
$$

How do we do precision calculations?

- We cannot solve exactly the SM Lagrangian: use perturbation theory
- QCD factorisation theorem

$$
\begin{aligned}
& \text { Probability of finding a parton } \\
& \text { into the proton } \\
& \text { Probability that two partons } \\
& \text { scatter into a given final state } \\
& \sigma_{p p \rightarrow X}(s)=\sum_{a b} \int d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}=x_{1} x_{2} s\right) \\
& \text { must be fit to data, process can be computed in perturbation } \\
& \text { independent theory, process dependent } \\
& \hat{\sigma}_{a b \rightarrow X}=\hat{\sigma}_{a b \rightarrow X}^{(0)}+\alpha_{s} \hat{\sigma}_{a b \rightarrow X}^{(1)}+\alpha_{s}^{2} \hat{\sigma}_{a b \rightarrow X}^{(2)}+\alpha_{s}^{3} \hat{\sigma}_{a b \rightarrow X}^{(3)}+\ldots
\end{aligned}
$$

How do we do precision calculations?

- We cannot solve exactly the SM Lagrangian: use perturbation theory
- QCD factorisation theorem

$$
\begin{aligned}
& \text { Probability of finding a parton } \\
& \text { into the proton } \\
& \text { Probability that two partons } \\
& \text { scatter into a given final state } \\
& \sigma_{p p \rightarrow X}(s)=\sum_{a b} \int d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}=x_{1} x_{2} s\right) \\
& \text { must be fit to data, process can be computed in perturbation } \\
& \text { independent theory, process dependent } \\
& \hat{\sigma}_{a b \rightarrow X}=\hat{\sigma}_{a b \rightarrow X}^{(0)}+\alpha_{s} \hat{\sigma}_{a b \rightarrow X}^{(1)}+\alpha_{s}^{2} \hat{\sigma}_{a b \rightarrow X}^{(2)}+\alpha_{s}^{3} \hat{\sigma}_{a b \rightarrow X}^{(3)}+\ldots
\end{aligned}
$$

strong coupling, ~ 0.1

How do we do precision calculations?

- We cannot solve exactly the SM Lagrangian: use perturbation theory
- QCD factorisation theorem
$\sigma_{p p \rightarrow X}(s)=\sum_{a b} \int d x_{1} d x_{2} f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}=x_{1} x_{2} s\right)$

- Going higher orders, the complexity of the computation explodes

$S M \neq Q C D$

- So far, we considered only QCD effects
- In the SM also electroweak effects must be accounted for \rightarrow Multi-coupling expansion
- Since $\alpha \approx \alpha_{s}{ }^{2}$, EW effects cannot be neglected for precision
- EW effects grow at large energies: Sudakov enhancement
- Luckily, NLO EW corrections have been automated in the last years see e.g.: Kallweit et al, I4I2.5I57 (Sherpa+OpenLoops), Biedermann et al, I 704.05783 (Sherpa+Recola+Collier), Frederix, Frixione, Hirschi, Pagani, Shao, MZ, I804.I00I7 (MG5_aMC)
- Relevance of EW corrections also beyond SM and LHC:
- Can be $\mathrm{O}(\mathrm{I})$ at high-energy lepton colliders (specially muons)
- Sizeable effects in Dark-Matter searches, e.g. indirect-detection with heavy DM particles see e.g. Ciafaloni et al, $\mid 104.2996$..., Cavasonza et al, 1409.8226

$S M \neq Q C D$

- So far, we considered only QCD effects
- In the SM also electroweak effects must be accounted for \rightarrow Multi-coupling expansion
- Since $\alpha \approx \alpha_{s}{ }^{2}$, EW effects cannot be neglected for precision

- EW effects grow at large energies: Sudakov enhancement
- Luckily, NLO EW corrections have been automated in the last years see e.g.: Kallweit et al,I4I2.5I57 (Sherpa+OpenLoops), Biedermann et al, I704.05783 (Sherpa+Recola+Collier), Frederix, Frixione, Hirschi, Pagani, Shao, MZ, I804.I0017 (MG5_aMC)
- Relevance of EW corrections also beyond SM and LHC:
- Can be $\mathrm{O}(\mathrm{I})$ at high-energy lepton colliders (specially muons)
- Sizeable effects in Dark-Matter searches, e.g. indirect-detection with heavy DM particles see e.g. Ciafaloni et al, $\mid 104.2996$..., Cavasonza et al, 1409.8226

EW corrections vs EW effects

- A general process has several contributions at LO, NLO, ...
- Example: top pair

- The LO is often identified with the contribution with most α_{s}
- At NLO the first two contributions are identified with the NLO QCD and NLO EW corrections
- This structures induces mixed QCD-EW effects at NLO: $\mathrm{NLO}_{\mathrm{i}}=\mathrm{LO}_{\mathrm{i}-1} \otimes \mathrm{EW}+\mathrm{LO}_{\mathrm{i}} \otimes \mathrm{QCD}$

Large EW corrections

- Despite the naive estimate $\alpha \sim \alpha_{s}{ }^{2}$, there are cases when EW corrections comparable to NLO QCD or larger. It happens when:
- Large scales are probed (VBS)
- Power counting is altered (4 top: $\mathrm{y}_{\mathrm{t}} \mathrm{vs} \alpha$)
- New production mechanisms, different than those at the "dominant" LO, enter (ttW, bbH)

Marco Zaro, I7-07-2024

EW Sudakov Logarithms

QCD

- Since gluons are massless, one must include virtual and real radiation in NLO QCD computations
- TheW/Z/Higgs boson masses make EW corrections finite. No need to include heavy-boson radiation (distinguishable, in principle)
- Even if we included HBR, cancelation will only be partial Manohar et al, 1409.1918
- However, at high energies, the would-be IR divergence appears via logs:

$$
\alpha^{k} \log ^{p} \frac{s}{m_{W_{,}}^{2}}, \quad p \leq 2 k
$$

- EWSL are universal, enhance the cross section at high-energy, and can be resummed Denner, Rode, 2402.10503

Universality of EWSL

VBS: Biedermann et al, 1708.00268

ttW: Frederix, Pagani, MZ | 7 | | . 02| | 6

Frederix, Frixione, Hirschi,
Pagani, Shao, MZ 1711.02116

- EWSL enhancement is a feature of many scattering processes
- Still, other effects of different origin can appear in the same kinematic regime: photon PDFs, quasi-collinear enhancements, etc...

Don't we have

the exact EW corrections?

- Despite the fact we have the exact EW corrections, EWSL have re-gained attention in the recent years:

see e.g. the automation in Sherpa, Bothmann et al, 2006.I4635

 or OpenLoops, Lindert et al, 23I2.07927- Can be resummed, providing NLO+NLL EW accuracy
- Much faster and more stable than exact NLO EW corrections
* Only Born-like kinematics: PS merging/matching simplified
Chiesa et al, I 305.6837; Bothmann et al, 2 I I I. I 3453
* Universal: can be computed also for BSM theories, where UV renormalisation is very complex or even impossible

Bothmann et al, 2 I I |. 13453

$\star=$ In this talk

EWSL by Denner and Pozzorini

- In their seminal works, D\&P derived the structure of EWSL for one-loop matrix elements, where at least one helicity configuration is not masssuppressed
- All invariants must satisfy the constraint $\left|r_{i j}\right| \simeq s \gg M_{W}^{2}$
- SM is chiral \rightarrow EWSL must be computed helicity-by-helicity
- Use GBET for longitudinal polarisations
- EWSL decomposed as sum of 4 terms

$$
\begin{gathered}
\delta=\underbrace{\delta_{\text {Collinear single logs }}^{\mathrm{LSC}}}_{\text {Subbeading soft-collinear Parameter remormalisation }}+\underbrace{\delta^{\mathrm{SSC}}}_{\text {Leading soft-collinear }}+\delta^{\mathrm{C}}+\delta^{\mathrm{PR}} \\
\text { Ler }
\end{gathered}
$$

- Photon and fermion masses to regulate IR divergences
- Analytic control of expressions (for simple processes): ability to single out only the dominant terms in the results

A glance at the anatomy of EWSL

$$
\begin{aligned}
& \text { Imaginary part and extra angular dependence (} \left.\Delta^{s \rightarrow r k l}\right)
\end{aligned}
$$

- Soft-collinear terms originate from vector-boson exchange between external legs (in the eikonal approx.)
- In the strict high-energy approximation (as in D\&P), terms with $\mathrm{s} / \mathrm{r}_{\mathrm{kl}}$ are neglected. Their inclusion can improve angular dependence
- The imaginary part was not considered in D\&P
- Other terms originate from purely-collinear configurations and field renormalisation

Implementation of EWSL in MG5_aMC

Pagani, MZ arXiv:2II0.037I4

Implementation of EWSL in MG5_aMC

 Pagani, MZ arXiv:2II 0.03714- Builds on the work by D\&P, with some variations:
- Automate the computation of EWSL for any process, in a fully-numerical framework: MG5_aMC Alwall, ..., MZ, 1405.0301 \& Frixione,, MZ, 1804.10017
- Translate expressions using the modern language of Dim.Reg.
- Include a missing imaginary part in D\&P (relevant for $2 \rightarrow n, n \geq 3$)
- Provide results for the squared amplitude, including the tree-loop interference, both due to EW and QCD effects
- Improve angular dependence by retaining explicit r_{kl} dependence
- Obtain approximations for physical cross sections (Virtual+Reals), with the possibility that photons are clustered with charged particles

The automation of EWSL

- Use MG5_aMC to generate all the needed matrix elements:
- Born ME's B_{i}, including those where $\mathrm{V}^{0, \pm \rightarrow \mathrm{G}^{0, \pm}}$
- Isospin-linked Borns $\mathrm{B}_{\mathrm{i}, \mathrm{j}}$, and their interferences with B_{i}
- Since external particles differ, momenta may need reshuffling to satisfy onshell relations
- Keep track of all terms needed for each EWSL contribution, helicity by helicity
- Compute δ^{PR} with numerical derivatives

$$
\delta^{\mathrm{PR}} \mathcal{M}=\frac{\delta \mathcal{M}_{0}}{\delta e} \delta e+\frac{\delta \mathcal{M}_{0}}{\delta c_{\mathrm{w}}} \delta c_{\mathrm{w}}+\frac{\delta \mathcal{M}_{0}}{\delta h_{\mathrm{t}}} \delta h_{\mathrm{t}}+\left.\frac{\delta \mathcal{M}_{0}}{\delta h_{\mathrm{H}}} \delta h_{\mathrm{H}}^{\mathrm{eff}}\right|_{\mu^{2}=s}
$$

- No special Feynman rule needed by the model \rightarrow easy to extend BSM
- Formula adapted for both G_{μ} and $a(M z)$ scheme

Isospin-linked borns

- EWSL originate from loops where EW vector bosons attach to one or two external legs
- This can change e.g. the flavour of a given fermion line ($u \rightarrow d, l \rightarrow v, \ldots$)
- In this case, the Born matrix element is interfered with an 'isospin-linked' term

Validation:

Approximated virtual amplitudes

LO amplitude, for each leading helicity

Loop or Sudakov / LO
(Loop-Sudakov)/LO must be a constant if logs are correct
(checked with a fit)

QCD contr. ON/OFF

From amplitudes to cross sections

- D\&P approximate the contribution of virtual diagrams to the cross section
- Real emissions will partly compensate it, in particular the QED part
- We introduce a purely-weak Sudakov approximation: QED effects are removed everywhere, except for PR renormalisation
- This assumes that photons are always clustered with charged particles (also massive ones!)
- Other approaches drop the IR-divergent em terms. However:
- This way QED is removed only up to Mw_{w}
- But QED effects appear also elsewhere (SSC, Collinear)
- How does this compare with exact NLO corrections?

Predictions for cross sections

- Setup:
- 100 TeV pp collider
- Charged particles are always clustered with photons within $\Delta R=0.4$
- Final-state particles required to be hard, central and separated (cuts are specific to each process considered)
- We compare exact NLO EW corrections (including and excluding initialstate photons) with
- The Sudakov approximation as from D\&P, excluding only the em terms (SDK ${ }^{0}$)
- Our approximation for the purely-weak Sudakov corrections (SDK weak)
- Both cases are studied with or without the extra angular terms from $\Delta^{\mathrm{s} \rightarrow \mathrm{rkl}}$

Drell-Yan (pp $\rightarrow \mathrm{e}^{+} \mathrm{e}$)

- Charged FS: SDK weak much closer to EW corrections wrt SDK ${ }_{0}$
- $2 \rightarrow 2$ process with hard cuts: small effects due to $\Delta^{s \rightarrow r k l}$

ZZZ production

$p_{T}\left(Z_{i}\right)>1 \mathrm{TeV}, \quad\left|\eta\left(Z_{i}\right)\right|<2.5$,

$$
m\left(Z_{i}, Z_{j}\right)>1 \mathrm{TeV}, \quad \Delta R\left(Z_{i}, Z_{j}\right)>0.5
$$

- Neutral FS: small difference between SDK weak and $^{\text {SDK }}{ }_{0}$
- $2 \rightarrow 3$ process: inclusion of $\Delta s \rightarrow r k l$ improves approximation of EW corrections
- EW corrections exceed 100% : need for their resummation

WWW production

$$
p_{T}\left(W_{i}\right)>1 \mathrm{TeV}, \quad\left|\eta\left(W_{i}\right)\right|<2.5
$$

$$
m\left(W_{i}, W_{j}\right)>1 \mathrm{TeV}, \quad \Delta R\left(W_{i}, W_{j}\right)>0.5
$$

- $2 \rightarrow 3$ process with charged $\mathrm{FS}: S D K_{\text {weak }}$ with $\Delta^{\mathrm{s} \rightarrow \mathrm{rkl}}$ closest to exact EW corrections (without initial photons)
- Initial photons (from real radiation) have huge effects: not accounted for by Sudakov approx.

Including EWSL in NLO+PS simulations

Pagani,Vitos, MZ, 2309.00452

The problem

- Matching NLO EW to QED PS is not yet solved in general
- Exact matching available only for processes with a single LO contribution DY: Barzè et al, I 302.4606; HV(J): Granata et al, I 706.03522; VBS: Chiesa et al, I906.0I863,VV: Chiesa et al, 2005.I2I46; WZ@NNLO+PS: Lindert et al, 2208.I 2660
- Approximate solutions exist, not formally NLO-accurate, but with a decent phenomenological description (when target accuracy is $\sim 10 \%$) VV(J): Brauer et al, 2005.I2 I28; top: Gutschov et al, I803.00950;
V+jets: Kallweit et al, I5 I I.08692, ...
- Main issue: how to assign colour-flows to interferences (LO_{2} is mostly an interference contribution)
- However, quite often, $\mathrm{LO}_{2} / \mathrm{LO}_{1} \ll \mathrm{a} / \mathrm{a}_{\text {s }}$ so that these configurations can be somehow neglected
- EWSL are an excellent compromise for this problem:

- They provide the bulk of the cross section, in a fast and stable manner
- In the SDK weak scheme, they can be supplemented by QED PS without double counting

Including approximate EW corrections beyond NLO

- When combining NLO QCD EW corrections, one can approximate the mixed NNLO_{2} term by the so-called multiplicative approach, if both are due to universal effects (soft emissions for QCD, EWSL for EW)
- This stabilises the scale-dependence of EW corrections, which is now NLO-like

- In the context of event-generation, EWSL can improve the multiplicative approach:
- Each kind of events, Born-like (S) or Real-like (H), can be corrected by the EWSL corresponding to the event's multiplicity
- Approach can be extended to multijet-merging Bothmann et al, 2111.13453
- A smooth transition in the soft/collinear limit of H events must be ensured

Including EWSL in NLO+PS samples

- in MG5_aMC, S and H events are defined as follows:

$$
\begin{aligned}
\mathrm{d} \sigma^{(\mathrm{s})} & =\mathrm{d} \phi_{n+1}\left[\left(\mathcal{B}+\mathcal{V}+\mathcal{C}^{\mathrm{int}}\right) \frac{\mathrm{d} \phi_{n}}{\mathrm{~d} \phi_{n+1}}+\left(\mathcal{C}_{\mathrm{MC}}-\mathcal{C}\right)\right] \\
\mathrm{d} \sigma^{(\mathbb{H})} & =\mathrm{d} \phi_{n+1}\left(\mathcal{R}-\mathcal{C}_{\mathrm{MC}}\right),
\end{aligned}
$$

- Events from each class can be corrected by the corresponding EWSL

$$
\begin{aligned}
& w_{\mathbb{S}} \Longrightarrow\left(1+\delta_{(\mathbf{s})}^{\mathrm{EWSL}}\right) w_{\mathbb{S}} \quad w_{\mathbb{H}} \Longrightarrow\left(1+\delta_{(\mathbb{H})}^{\mathrm{EWSL}}\right) w_{\mathbb{H}} \\
& \text { with } \delta_{(S)}^{\mathrm{EWSL}}=\left.\left.\delta_{\mathrm{LA}}^{\mathrm{EW}}\right|_{\mathrm{SDK}_{\text {weak }}}\left(e_{\mathbb{S}}\right) \quad \delta_{((\mathrm{il})}^{\mathrm{EWSL}} \equiv \delta_{\mathrm{LA}}^{\mathrm{EW}}\right|_{\mathrm{SDK}_{\text {weak }}}\left(e_{\text {IH }}\right) \text { if } \forall \mid \mathrm{r}_{\mathrm{k} \mid} / / \mathrm{mw}>\mathrm{C} \\
& \left.\delta_{(\mathbb{I I})}^{\mathrm{EWL}} \equiv \delta_{\mathrm{LA}}^{\mathrm{EW}}\right|_{\mathrm{SDK}_{\text {weak }}}\left(e_{\mathrm{s}}^{(\hat{k}, \hat{l})}\right) \quad \text { else }
\end{aligned}
$$

- This enforces the proper IR behaviour of H events
- In principle, there is also an interplay between C and the shower scale μ_{s}. In practice, relative impact of EWSL is independent on μ_{s} variations even by large factors

Shower-scale independence of relative corrections

$\mathrm{k}=\mathrm{l}\left(\right.$ default $\left.\mu_{\mathrm{s}}\right)$ vs $\mathrm{k}=0.2$ ($\mathrm{I} / 5$ reduction)
Shower-scale variations have effect on rates

Huge effects on interplay between S and H events

Relative effect of
EWSL stays the same for $\mathrm{S}+\mathrm{H}$

Results:
 ttH

Results:

zzZ

Effect of EW corr. (very) large for $3 Z$

Difference between mult. and add. approach visible and larger than QCD scale unc.

Effect of EWSL independent on C

Results:

ZZZ (decayed)

- Events reweighed with the EWSL can be further processed with other tools, e.g. MadSpin Artoisenet et al, $12 \mid 2.3460$
- Decays are included keeping tree-level spin correlations (neglects nonresonant and virtual/EWSL-induced effects)
- The weak-only version of EWSL can be combined with QED PS without double counting

EWSL for BSM simulations: top-pair production in the SMEFT
 El-Faham, Mimasu, Pagani, Severi,Vryonidou, MZ, 24XX.YYYYY

EW corrections in the SMEFT

- Typical searches for BSM effects look at tails of distributions, where the high-energy behaviour may be different from the SM
- A comprehensive approach for BSM searches is the usage of Effective Theories, such as the SMEFT
- Currently, SMEFT is simulated without EW corrections
- Computing EW corrections in the SMEFT is a very challenging: so far, only available for very simple processes
μ decay: Pruna et al, | 408.3565
H decay: Hartmann et al, I505.02646 \& I 507.03568; Ghezzi et al, I505.03706; Gauld et al, I 5 I 2.02508 ;
Dawson et al, I80I.0II36 \& I807.II504; Dedes et al, I805.00302 \& I903.I2046; Cullen et al, I904.06358 \& 2007.I5238;

Z/W pole obs.: Hartmann et al, I6II.09879; Dawson et al, I808.05948 \& I909.02000;
Drell-Yan: Dawson et al, 2 I 05.05852

- Can we use EWSL in the SMEFT?

Mass suppressed amplitudes in the SMEFT

- While in the SM processes with a mass-suppressed amplitude are very rare, they are quite common in the SMEFT

$$
O_{t G}=\frac{g_{S} C_{t G}}{\Lambda^{2}} \bar{Q}_{L} \tilde{\phi} \sigma^{\mu \nu} G_{\mu \nu} t_{R}=\frac{g_{S} C_{t G} v}{\Lambda^{2}} \bar{t}_{L} \sigma^{\text {m }} G_{\mu \nu} t_{R}+\frac{g_{S} C_{t G}}{\Lambda^{2}} h \bar{t}_{L} \sigma^{\mu \nu} G_{\mu \nu} t_{R}
$$

- The D\&P algorithm works only for non-mass suppressed amplitudes
- One cannot use EWSL in general for SMEFT processes
- However, for those operators which are not mass suppressed, EWSL can give us the bulk of EW corrections at high energy

A class of non-mass-suppressed contributions: four fermion operators

- $4 f$ operators are a class of non mass-suppressed operators
- They are relevant for Drell-Yan, top pair production,...
- We can use them to validate D\&P in a non-trivial BSM case, and to estimate, for the first time, the impact of EW corrections on these processes in the SMEFT.
Are EW corrections the same as in the SM?
- If we restrict ourselves to $4 f$ operators, the 3 -coupling expansion of the amplitudes ($\mathrm{QCD}, \mathrm{EW}, \mathrm{I} / \Lambda$) greatly simplifies
- In the case of $q \bar{q} \rightarrow \overline{\mathrm{t}}$

Validation of one-loop results

- We compute I-loop EW corrections to $u \bar{u} \rightarrow \overline{\mathrm{tt}}$ and we compare with the D\&P algorithm
- Loops are computed with FeynCalc+Feynarts+PackageX. γ^{5} is treated in the BHMV scheme
- EWSL are computed with MG5_aMC, on top of the I / Λ^{4} Born
- Difference between EWSL and exact virtual approaches a constant

EW Corrections to top-pair production

- Relative impact of EWSL is different between SM, $\mathrm{I} / \Lambda^{2}, \mathrm{I} / \Lambda^{4}$ terms. Pattern of corrections depend on operator
- Difference related to isospin-linked contributions (single-logaritmic)
- EFT contributions show cancelations between QCD and EW
- It is inaccurate to propagate SM K-factors to SMEFT contributions
- Impact of EW corrections about 10% at I TeV

Lifting degeneracy between operators

Cross-section [pb]

	LO	EWSL		
SM	$2.01 \cdot 10^{-4}$	$1.61 \cdot 10^{-4}$		
	Linear		Quadratic	
	LO	SUD	LO	SUD
$c_{Q q}^{1,8}$	$3.78 \cdot 10^{-4}$	$2.56 \cdot 10^{-4}$	$9.04 \cdot 10^{-4}$	$6.06 \cdot 10^{-4}$
$c_{Q q}^{3,8}$	$2.20 \cdot 10^{-4}$	$1.72 \cdot 10^{-4}$	$9.04 \cdot 10^{-4}$	$7.41 \cdot 10^{-4}$
$c_{t q}^{8}$	$3.78 \cdot 10^{-4}$	$2.86 \cdot 10^{-4}$	$9.04 \cdot 10^{-4}$	$6.80 \cdot 10^{-4}$
$c_{t u}^{8}$	$3.00 \cdot 10^{-4}$	$2.68 \cdot 10^{-4}$	$7.30 \cdot 10^{-4}$	$6.50 \cdot 10^{-4}$
$c_{Q u}^{8}$	$2.99 \cdot 10^{-4}$	$2.43 \cdot 10^{-4}$	$7.30 \cdot 10^{-4}$	$5.88 \cdot 10^{-4}$
$c_{t d}^{8}$	$7.95 \cdot 10^{-5}$	$7.12 \cdot 10^{-5}$	$1.74 \cdot 10^{-4}$	$1.56 \cdot 10^{-4}$
$c_{Q d}^{8}$	$7.92 \cdot 10^{-5}$	$6.45 \cdot 10^{-5}$	$1.74 \cdot 10^{-4}$	$1.41 \cdot 10^{-4}$

- EW corrections lift degeneracy of different operators, removing flat directions in global fits

Wrapping up...

- LHC is restarting: a challenging physics programme is awaiting us!
- Search for new physics relies on accurate knowledge of SM processes \rightarrow Inclusion of QCD and EW corrections crucial
- EW corrections dominated by Sudakov logarithms at high energies
- EWSL provide a fast and stable approximation for EW corrections, with some practical advantages
- Possibility to deliver predictions at NLO+NLL EW
- Easy matching/merging
- Straightforward extension to BSM scenarios
- However, large EW effects can also come via other mechanisms (photon PDF, quasi-collinear configurations, etc)
\rightarrow the validity of the EWSL approximation should be assessed process by process and observable by observable

Conclusion \& Outlook

- We have automated EWSL in MG5_aMC, based on the work of Denner\&Pozzorini, with a couple of extensions
- EWSL thoroughly validated vs exact virtual amplitude
- For physical cross-sections, we have devised a weak-only version of EWSL
- EWSL contributions can be included in NLO+PS samples via reweighting
- For the moment, our method neglects terms originating from LO_{2}, therefore it can be applied only for processes where $L O_{2} / L O_{1}<\alpha / a_{s}$
- EWSL in the SDK weak approach can be combined with QED PS
- WIP for the application of EWSL in the SMEFT
- Care should be used to avoid mass-suppressed terms
- Results for 4 fermion operators: simplest case
- Relative impact is different on $\mathrm{I} / \Lambda^{4}, \mathrm{I} / \Lambda^{2}$, and SM. Important for EFT fits
- EW corrections lift degeneracy between operators

Backup

Dominant helicities

- The derivation of D\&P crucially relies on the amplitude not being masssuppressed
- If d is the dimensionality of a squared matrix element (for $2 \rightarrow n, d=2-n$), the D\&P algorithm applies only if $|\mathrm{M}|^{2}$ scales with s as s^{d}
- A notable exception: Higgs VBF, for which $|M|^{2} \sim M w^{2} / s^{2}$

Don't buy everything they sell

- In ZHH production, at large PT(Z), EWSLs fail to reproduce EW corrections

Don't buy everything they sell

- In ZHH production, at large PT(Z), EWSLs fail to reproduce EW corrections

- These configurations are dominated by low $\mathbf{M (H H)}$ and are mass-suppressed (dominated by the trilinear diagram)

Don't buy everything they sell

- In ZHH production, at large PT(Z), EWSLs fail to reproduce EW corrections

- These configurations are dominated by low $\mathbf{M (H H)}$ and are mass-suppressed (dominated by the trilinear diagram)

Some first results, $2 \rightarrow 2$

The missing $i \boldsymbol{\pi} \boldsymbol{\theta}\left(\mathrm{r}_{\mathrm{kl}}\right)$ factor

- $2 \rightarrow 2$ amplitudes (as those considered by D\&P) are always real (optical theorem).Any missing imaginary part in the logs drops out when considering $2 \Re\left(B V^{*}\right) \simeq 2 \Re\left(B B^{*} \delta\right)$
- For $2 \rightarrow \mathrm{n}, \mathrm{n} \geq 3$, imaginary parts from the logs can combine with those of $B B^{\prime *}$, giving rise to single-logarithmic terms
- They must be included in order to claim NLL accuracy

The missing $i \boldsymbol{\pi} \boldsymbol{\theta}\left(\mathrm{r}_{\mathrm{k}}\right)$ factor

- $2 \rightarrow 2$ amplitudes (as those considered by D\&P) are always real (optical theorem).Any missing imaginary part in the logs drops out when considering $2 \Re\left(B V^{*}\right) \simeq 2 \Re\left(B B^{*} \delta\right)$
- For $2 \rightarrow \mathrm{n}, \mathrm{n} \geq 3$, imaginary parts from the logs can combine with those of BB", giving rise to single-logarithmic terms
- They must be included in order to claim NLL accuracy

From IR masses to Dim.Reg. (and the treatment of QED effects)

- Consider e.g. the LSC term, in the D\&P formalism.A photon mass appears

$$
\begin{aligned}
& \underbrace{Q_{k}^{2}+\left(I_{Z}^{2}\right)_{k}+\left(I_{W}^{2}\right)_{k}}
\end{aligned}
$$

- The QED contribution is split in two parts:
- from to M_{w} in Lem $L^{\mathrm{em}}\left(s, \lambda^{2}, m_{k}^{2}\right):=2 l(s) \log \left(\frac{M_{\mathrm{W}}^{2}}{\lambda^{2}}\right)+L\left(M_{\mathrm{W}}^{2}, \lambda^{2}\right)-L\left(m_{k}^{2}, \lambda^{2}\right)$
- from Mw to s in $L(s)$
- Consider the divergent part: $\boldsymbol{\lambda}$ (and m_{k}) acts as a regularisation scale for the IR divergences
- We can promote λ to Q , the IR regularisation scale of Dim.Reg., without losing any logarithmic term
- We can then set $\mathrm{Q}^{2}=\mu^{2}{ }^{2}$, and compare the Sudakov approximation with the exact virtuals

From IR masses to Dim.Reg. (and the treatment of QED effects)

- In the SSC terms, this leads to a vanishing contribution if the $\mathrm{r}_{\mathrm{ij}} / \mathrm{s}$ part is dropped

$$
\delta_{i_{i_{k}^{\prime} k_{k} i_{i}}^{A, \text { SSC }}}^{\mathrm{S}}(k, l)=\left[2\left(l(s)+l\left(M_{W}^{2}, Q^{2}\right)\right)\left(\log \frac{\left|r_{k l}\right|}{s}-i \pi \Theta\left(r_{k l}\right)\right)+\Delta^{\left.s \rightarrow r_{k l}\left(r_{k l}, M_{W}^{2}\right)\right] I_{i_{k} i_{k}}^{A}(k) I_{i^{\prime} i_{i}}^{A}(l)}\right.
$$

More on the QED contribution (towards the extension to QCD)

$$
\begin{gathered}
\underbrace{Q_{k}^{2}+\left(I_{Z}^{2}\right)_{k}+\left(I_{W}^{2}\right)_{k}}_{\delta_{i_{k}^{\prime} i_{k}}^{\mathrm{LSC}}} \\
L^{\mathrm{em}}\left(s, \lambda^{2}, m_{k}^{2}\right):=2 l(s) \log \left(\frac{1}{2}\left[C_{i_{k}^{\prime} i_{k}}^{\mathrm{ew}}(k) L(s)-2\left(I^{Z}(k)\right)_{i_{k}^{\prime} i_{k}}^{2} \log \frac{M_{Z}^{2}}{\lambda_{W}^{2}} l(s)+L\left({M_{\mathrm{W}}}_{2}^{2}, \lambda^{2}\right)-L\left(m_{k}^{\prime}, \lambda^{2}\right) \text { remember: } Q_{k}^{2} L^{\mathrm{em}}\left(s, Q^{2}, m_{k}^{2}\right)\right]\right.
\end{gathered}
$$

- In LSC, QED enters in Lem and in the term $\sim \mathrm{L}(\mathrm{s})$
- In the D\&P formulation, Mw acts as a separator from the low-energy $\left(\lambda^{2} \rightarrow \mathrm{Mw}^{2}\right)$ to the high-energy regime $\left(\mathrm{Mw}^{2} \rightarrow \mathrm{~s}\right)$
- If $\mathrm{Q}^{2}=\mathrm{s}$, the QED contribution vanishes in LSC (also in SSC) for massless particles
- Warning! This is not equivalent to just saying that Lem can be dropped
- For massive particles (e.g. top), a term $\sim L\left(s, m_{t}\right)$ remains
- QED contributions appear also in the C and PR terms
- QCD terms are analogous to those from QED (only top is massive)

The inclusion of QCD effects

- Remember: $\mathrm{NLO}_{\mathrm{i}}=\mathrm{LO} \mathrm{O}_{\mathrm{i}-1} \otimes \mathrm{EW}+\mathrm{LO}_{\mathrm{i}} \otimes \mathrm{QCD}$ NLO 1
(2) 3 4
- So far, we have focused on approximating EW corrections
- The corrections of QCD origin stemming on top of LO_{2} are analogous to the QED-type corrections
- Since in QCD we always cluster massless patrons into jets, a remarkablysimple structure appears

$$
\delta \tilde{\mathcal{M}} \equiv \tilde{\mathcal{M}}_{0}\left[\frac{\left(n_{t} L^{t}(s)\right.}{\underline{\mathrm{LSC}}}+\frac{n_{\alpha_{S}} l^{\alpha_{s}}\left(\mu_{R}^{2}\right)}{\mathrm{PR}, \alpha_{s}}-\frac{\left.n_{g} l^{\alpha_{S}}(s)\right)}{\overline{\mathrm{C}, g \rightarrow \mathrm{gt}}}+\frac{\frac{\delta \tilde{\mathcal{M}}_{0}}{\delta m_{t}}\left(\delta m_{t}\right)^{\mathrm{QCD}}}{\mathrm{PR}, m_{t}}\right]
$$

with
$L^{t}(s) \equiv \frac{C_{F}}{2} \frac{\alpha_{S}}{4 \pi}\left(\log ^{2} \frac{s}{m_{t}^{2}}+\log \frac{s}{m_{t}^{2}}\right) \quad l^{\alpha}\left(\mu^{2}\right) \equiv \frac{1}{3} \frac{\alpha_{S}}{4 \pi} \log \frac{\mu^{2}}{m_{t}^{2}} \quad\left(\delta m_{t}\right)^{\mathrm{QCD}} \equiv-3 C_{F} \frac{\alpha_{S}}{4 \pi} \log \frac{s}{m_{t}^{2}}$

The inclusion of QCD effects: some results

