Concepts of Experiments at Future Colliders II

PD Dr. Oliver Kortner

19.04.2024

1. Fundamentals of electronic readout of particle detectors.
2. Fundamentals of statistical treatment of experimental data.
3. Reconstruction of $p p$ collision events.
4. Trigger concepts for experiments at hadron colliders.

Fundamentals of electronic readout of particle detectors

Introductory example: cylindrical drift tube

- Particle detectors provide current or voltage pulses, which contain information about particle passage or deposited energy.
- To obtain this information, they must be processed electronically.

Analog signal: Information contained in the continuous variation of electrical signal properties, e.g., pulse height, pulse duration, or pulse shape.

Digital signal: Information stored in discrete form.
Example. TTL (Transistor-Transistor Logic):
Logical 0: Signal between 0 and 0.8 V .
Logical 1: Signal between 2 V and 5 V .
Advantage of a digital signal: No information loss with small signal disturbances.

Slow Signal: $t_{A} \gtrsim 100 \mathrm{~ns}$.
Fast Signal: $t_{A} \lesssim 1 \mathrm{~ns}$.

Fourier decomposition of a signal

Temporal evolution of a signal: $s(t)$.
Fourier transform: $\hat{s}(\omega)$.

Example of an ideal rectangular pulse

$$
\begin{gathered}
s(t)=\left\{\begin{array}{l}
A \text { for } t \in\left[-\frac{T}{2}, \frac{T}{2}\right] \\
0 \text { otherwise. }
\end{array}\right. \\
\underline{\underline{s}(\omega)}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} s(t) e^{-i \omega t} d t=\frac{1}{\sqrt{2 \pi}} \int_{-T / 2}^{T / 2} A \cdot e^{-i \omega t} d t \\
=\left.\frac{A}{\sqrt{2 \pi}} \frac{-i}{\omega} e^{-i \omega T}\right|_{-T / 2} ^{T / 2}=\frac{A T}{\sqrt{2 \pi}} \frac{\sin \left(\frac{\omega T}{2}\right)}{\omega T / 2} .
\end{gathered}
$$

Attenuation and bandwidth

Attenuation

$$
\begin{aligned}
& \xrightarrow[\text { signal } s_{\mathrm{E}}]{\text { Eingangs- Elektronik } \xrightarrow[\text { signal s }]{A}} \text { Ausgangs- } \\
& \\
& \quad-3 \mathrm{~dB}=10 \cdot \log _{10}\left(\frac{\left|\hat{s_{A}}\right|^{2}}{\left|\hat{s_{E}}\right|^{2}}\right) \Leftrightarrow \frac{\left|\hat{s_{A}}\right|^{2}}{\left|\hat{s_{E}}\right|^{2}}=10^{-\frac{3}{10}}=\frac{1}{2} .
\end{aligned}
$$

Bandwidth

Drude's model of electrical conduction in metals

Metals are electrical conductors. In an ideal conductor, the conduction electrons experience no resistance. In a real conductor, they collide with the atomic nuclei.

Assumptions

- Neglect of interaction between the conduction electrons.
- Free electron motion between collisions with atomic nuclei.
- Non-accelerated motion in between collisions.
- Elastic collisions between conduction electrons and atomic nuclei. The conduction electrons are not heated by the collisions.

Electron movement in the Drude model

Equation of motion of a conduction electron:

$$
m_{e} \cdot \frac{d \vec{v}}{d t}=-e \vec{E}
$$

τ : Average time between two collisions off atoms.

$$
<\vec{v}>=-\frac{e}{m_{e}} \vec{E} \cdot \tau+\underbrace{<\vec{v}_{0}>}_{=0}=-\frac{e}{m_{e}} \tau \cdot \vec{E} .
$$

n : Conduction electron density.
L : Length of the real conductor.
A : Cross section of the real conductor.

$$
d Q=-n \cdot e|\vec{v}| \cdot d t \cdot A \Leftrightarrow I=\frac{d Q}{d t}=-n e v \cdot A=\frac{n e^{2} \tau}{m_{e}} \cdot A \cdot E
$$

Hence

$$
\vec{j}=\frac{n e^{2} \tau}{m_{e}} \cdot \vec{E}=: \sigma \cdot \vec{E}
$$

σ : electric conductivity.

Voltage between the ends of the conductor:

$$
U=L \cdot \underbrace{E}_{=\frac{I}{\sigma \cdot A}}=\frac{L}{\sigma \cdot A} \cdot I=: R \cdot I\left(\mathrm{Ohm}^{\prime} \text { s Law }\right) .
$$

Ohmic resistance

$$
R=\frac{L}{\sigma \cdot A}=: \rho \cdot \frac{L}{A}
$$

ρ : specific resistance (unit: $\Omega \mathrm{cm}$).

Schematic symbols for an ohmic resistance:

$$
C=\frac{Q}{U} \Rightarrow \text { No current flow at DC voltage. }
$$

Current flow at AC voltage:

$$
\frac{d U}{d t}=\frac{\frac{d Q}{d t}}{C}=\frac{I}{C} .
$$

Transition to frequency representation:

$$
\begin{gathered}
U(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{U}(\omega) e^{i \omega t} d \omega, I(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{I}(\omega) e^{i \omega t} d \omega \\
\frac{d U}{d t}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} i \omega \hat{U}(\omega) e^{i \omega t} d \omega=\frac{I(t)}{C}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{C} \hat{I}(\omega) e^{i \omega t} d \omega,
\end{gathered}
$$

leading to $i \omega \hat{U}(\omega)=\frac{1}{C} \hat{I}(\omega)$, thus $\hat{U}(\omega)=\frac{1}{i \omega C} \hat{I}(\omega)$.

Capacitance - impedance and schematic symbol

$$
\hat{U}(\omega)=\frac{1}{i \omega C} \hat{I}(\omega) .
$$

Impedance: $Z_{C}=\frac{1}{i \omega C}$.
Schematic symbol:

Reminder: Field inside an ideal coil
$\frac{d N}{d l}$: Number of turns per unit length.
Ampére's law:

$$
\begin{aligned}
\oint_{\Gamma} \vec{B} \cdot d \vec{s} & =l \cdot B=\mu_{0} \cdot I \cdot \frac{d N}{d l} \cdot l \\
B & =\mu_{0} \frac{d N}{d l} \cdot I=: \frac{1}{A} L \cdot I
\end{aligned}
$$

A: Cross-sectional area of the coil.
L : Inductance.

- B exists only inside the coil.
- If the coil is made of an ideal conductor, \vec{E} inside the conductor is 0 . Otherwise, an infinitely large current would flow through the conductor.

$$
\Rightarrow \quad U_{a b}=0
$$

- With alternating current, because $\frac{d I}{d t} \neq 0, \frac{\partial B}{\partial t} \neq 0$, resulting in a non-zero electromotive force.

$$
\text { curl } \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

$$
U_{a b}=\oint \vec{E} \cdot d \vec{s}=\int_{A} \operatorname{curl} \vec{E} d \vec{A}=-\int_{A} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{A}=-\frac{\partial}{l t} B \cdot A=-\frac{\partial}{\partial t} \frac{1}{A} L I A=-L \frac{d I}{d t}
$$

In the frequency domain, we have $\hat{U}(\omega)=-i \omega L \hat{I}(\omega)$.

$$
\hat{U}(\omega)=-i \omega L \hat{I}(\omega)
$$

Impedance: $Z_{L}=-i \omega L$.

Circuit Symbol:

Remark. In the frequency domain, the behavior of a circuit containing the mentioned passive elements can be calculated in a similar manner to a circuit containing ohmic resistances, by using impedances.

Explanatory example: signal transmission via a coaxial cable

Due to their shielding, coaxial cables do not emit electromagnetic waves. However, they can intercept electromagnetic interference from the surroundings through their shielding.

Signal propagation in a coaxial cable

Equivalent circuit diagram for a Δz length segment of a coaxial cable

R, L, C, $\frac{1}{G}$ represent resistance, inductance, capacitance, and conductance per uni t length, respectively.
ΔI In an ideal cable, R and G are both equal to 0 .

Derivation of the general wave equation for a coaxial cable

$$
\begin{array}{r}
\Delta U=-(R \cdot \Delta z) \cdot I-(L \cdot \Delta z) \cdot \frac{\partial I}{\partial t} \\
\Delta I=-\left(\frac{1}{G} \cdot \Delta z\right) \cdot U-(C \cdot \Delta z) \cdot \frac{\partial U}{\partial t}
\end{array}
$$

Dividing by Δz and taking the limit as $\Delta z \rightarrow 0$ yields

$$
\begin{gathered}
\frac{\partial U}{\partial z}=-R \cdot I-L \cdot \frac{\partial I}{\partial t} \\
\frac{\partial I}{\partial z}=-\frac{1}{G} \cdot U-C \cdot \frac{\partial U}{\partial t}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial U}{\partial z}=-R \cdot I-L \cdot \frac{\partial I}{\partial t}, \quad \left\lvert\, \frac{\partial}{\partial z} .\right. \\
\frac{\left.\frac{\partial I}{\partial z}=-\frac{1}{G} \cdot U-C \cdot \frac{\partial U}{\partial t} \cdot \right\rvert\, \frac{\partial}{\partial t} .}{\frac{\partial^{2} U}{\partial z^{2}}=-R \cdot \frac{\partial I}{\partial z}-L \frac{\partial^{2}}{\partial z \partial t} I,} \\
\frac{\partial^{2}}{\partial z \partial t} I=-\frac{1}{G} \cdot \frac{\partial U}{\partial t}-C \cdot \frac{\partial^{2} U}{\partial t^{2}} . \\
\frac{\partial^{2} U}{\partial z^{2}}=L C \frac{\partial^{2} U}{\partial t^{2}}+(L G+R C) \frac{\partial U}{\partial t}+R G U . \\
\text { Ideal cable: } \mathrm{R}=0, \mathrm{G}=0 . \frac{\partial^{2} U}{\frac{\partial^{2}}{\partial z^{2}}=L C \frac{\partial^{2} U}{\partial t^{2}}} \\
\text { (Wave equation with } \left.v=\frac{1}{\sqrt{L C}}\right) .
\end{gathered}
$$

- In a real cable, G is very close to 0 .
- In a real cable, $R \neq 0$ leads to dispersion. In practice, the cables used are usually so short that dispersion can be neglected, so $R=0$ can be assumed.
- $L=\frac{\mu}{2 \pi} \ln \frac{b}{a}[\mathrm{H} / \mathrm{m}], C=\frac{2 \pi \epsilon}{\ln \frac{b}{a}}[\mathrm{~F} / \mathrm{m}]$.

$$
\Rightarrow v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \epsilon}}
$$

Thus, the choice of dielectric determines v.

- Characteristic impedance: $Z:=\frac{d U}{d I}=\sqrt{\frac{L}{C}}$.

The characteristic impedance depends on the geometry of the cable, i.e., its inner and outer diameter as well as the dielectric used.

Reflections at the ends of the cables

$$
U(t, x)=f(x-v t)+g(x+v t)
$$

representing an incoming + reflected wave.
Input signal: $U_{E}, I_{E} . Z=\frac{U_{E}}{I_{E}}$.
Reflected signal: $U_{R}, I_{R}, Z=\frac{U_{R}}{I_{R}}$.
Voltage drop across the resistor R : $U_{E}+U_{R}$.
Current through $R: I_{E}+I_{R}$.

$$
\Rightarrow R=\frac{U_{E}+U_{R}}{I_{E}-I_{R}}=\frac{U_{E}\left(1+\frac{U_{R}}{U_{E}}\right)}{I_{E}\left(1-\frac{I_{R}}{I_{E}}\right)}=Z \frac{1+\rho}{1-\rho}
$$

with the reflection coefficient $\rho:=\frac{U_{R}}{U_{E}}=\frac{I_{R}}{I_{E}}$. It holds $\rho=\frac{R-Z}{R+Z}$.

- Open cable: $R=\infty . \rho=1$. Complete reflection at the cable end.
- Short-circuited cable: $R=0 . \rho=-1$. Reflection with opposite amplitude.
- Terminated cable: $R=Z . \rho=0$. No reflection.

